首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide epitope affinity chromatography is a powerful technique for the purification of antibodies. This study aims to demonstrate the versatility of the technique and to show how biophysical techniques such as circular dichroism (CD) and fluorescence quenching (FQ) can aid the rational design of affinity ligands and characterization of antibody-based reagents. The performance of a number of peptide ligands for the purification of a range of different antibodies and recombinant fragments is investigated by automated fast-protein liquid chromatography. Purified products are analyzed for purity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. They are then radiolabelled and the immunoreactivity is determined. Ligands are analyzed for secondary structural characteristics by CD and for binding affinity by FQ. Finally, a study is performed to investigate the thermal stability of a recombinant antibody fragment by CD analysis. It is found that simple ligand modifications such as the introduction of a C-terminal cysteine residue can improve purification performance. The FQ studies show that the modified peptide has a higher affinity for antibody. The CD analysis shows that it has a tendency to dimerize because of the formation of disulfide bonds. The versatility of epitope affinity is demonstrated through the purification of a recombinant diabody (dbFv) and by the use of a separate peptide matrix for the purification of an unrelated antibody. All studies result in antibody preparations of high purity and immunoreactivity. The CD analysis of the dbFv shows that it is denatured at 37 degrees C and is therefore unsuitable as a targeting reagent for use in humans in its present form. It is concluded that epitope affinity chromatography coupled with biophysical analyses plays an important role in the production and characterization of antibody-based reagents for targeted diagnosis and therapy of human diseases.  相似文献   

2.
It is important to characterize drug-albumin binding during drug discovery and lead optimization as strong binding may reduce bioavailability and/or increase the drug's in vivo half-life. Despite knowing about the location of human serum albumin (HSA) drug binding sites and the residues important for binding, less is understood about the binding dynamics between exogenous drugs and endogenous fatty acids. In contrast to highly specific antibody-antigen interactions, the conformational flexibility of albumin allows the protein to adopt multiple conformations of approximately equal energy in order to accommodate a variety of ligands. Nuclear magnetic resonance (NMR) diffusion measurements are a simple way to quantitatively describe ligand-protein interactions without prior knowledge of the number of binding sites or the binding stoichiometry. This method can also provide information about ligand orientation at the binding site due to buildup of exchange-transferred NOE (trNOE) on the diffusion time scale of the experiment. The results of NMR diffusion and NOE experiments reveal multiple binding interactions of HSA with dansylglycine, a drug site II probe, and caprylate, a medium-chain fatty acid that also has primary affinity for HSA's drug site II. Interligand NOE (ilNOE) detected in the diffusion analysis of a protein solution containing both ligands provides insight into the conformations adopted by these ligands while bound in common HSA binding pockets. The results demonstrate the ability of NMR diffusion experiments to identify ternary complex formation and show the potential of this method for characterizing other biologically important ternary structures, such as enzyme-cofactor-inhibitor complexes.  相似文献   

3.
Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that plays important roles in narcotic metabolism, clinical prodrug activation, and the processing of fatty acid and cholesterol derivatives. We determined the 2.4 A crystal structure of hCE1 in complex with tacrine, the first drug approved for treating Alzheimer's disease, and compare this structure to the Torpedo californica acetylcholinesterase (AcChE)-tacrine complex. Tacrine binds in multiple orientations within the catalytic gorge of hCE1, while it stacks in the smaller AcChE active site between aromatic side chains. Our results show that hCE1's promiscuous action on distinct substrates is enhanced by its ability to interact with ligands in multiple orientations at once. Further, we use our structure to identify tacrine derivatives that act as low-micromolar inhibitors of hCE1 and may provide new avenues for treating narcotic abuse and cholesterol-related diseases.  相似文献   

4.
Binding specificity is an important consideration in drug design. An effective drug molecule often must bind with high specificity to its intended target in the body; lower specificity implies the possibility of significant binding to unintended partners, which could instigate deleterious side effects. However, if the target is a rapidly mutating agent, a drug that is too specific will quickly lose its efficacy by not binding well to functional mutants. Therefore, in molecular design, it is crucial to tailor the binding specificity of a drug to the problem at hand. In practice, specificity is often studied on a case-by-case basis, and it is difficult to create general understanding of the determinants of specificity from the union of such available cases. In this work, we undertook a comprehensive, general study of molecular binding with emphasis on understanding the determinants of specificity from a physical standpoint. By extending a theoretical framework grounded in continuum electrostatics and creating an abstracted lattice model that captures key physical aspects of binding interactions, we systematically explored the relationship between a molecule's physical characteristics and its binding specificity toward potential partners. The theory and simulated binding interactions suggested that charged molecules are more specific binders than their hydrophobic counterparts for several reasons. First, the biological spectrum of possible binding characteristics includes more partners that bind equally well to hydrophobic ligands than to charged ligands. Also, charged ligands, whose electrostatic potentials have strong orientational dependence, are more sensitive to shape complementarity than their hydrophobic counterparts. Ligand conformational and orientational flexibility can further influence a charged molecule's ability to bind specifically. Interestingly, we found that conformational flexibility can increase the specificity of polar and charged ligands, by allowing them to greatly lower the binding free energy to a select few partners relative to others. Additionally, factors such as a molecule's size and the ionic strength of the solution were found to predictably affect binding specificity. Taken together, these results, all of which stem from a unified theoretical framework, provide valuable physical insight into the general determinants of binding specificity and promiscuity in a biological environment. The general principles discussed here could prove useful in the design of molecules with tailored specificities, leading to more effective therapeutics.  相似文献   

5.
We describe the application of immunoaffinity extraction and mass spectrometry to the analysis of Ty1 Gag protein in lysates of Saccharomyces cerevisiae. A magnetic bead-conjugated monoclonal antibody was used to achieve selective extraction, the specificity of which was established by matrix-assisted laser desorption/ionization mass spectrometric (MS) analysis of an extract of the lysate of cells overexpressing the Ty1 Gag protein. MS analysis of similar extracts of lysates following tryptic hydrolysis confirmed selective extraction of the epitope-containing peptide fragment. Sufficient sensitivity was achieved to allow the application of this approach to the analysis of lysates of wild-type cells. Furthermore, the sequence of the epitope-containing peptide was confirmed by electrospray-tandem MS. To our knowledge, this constitutes the first report of the application of immunoaffinity extraction and tandem MS analysis to the characterization of an antigen recovered from a complex cellular system.  相似文献   

6.
The 20S proteasome is a large multicomponent protease complex. Relatively little is known about the mechanisms that control substrate specificity of its multiple active sites. We present here the crystal structure at 2.95 A resolution of a beta2-selective inhibitor (MB1) bound to the yeast 20S proteasome core particle (CP). This structure is compared to the structure of the CP bound to a general inhibitor (MB2) that covalently modified all three (beta1, beta2, beta5) catalytic subunits. These two inhibitors differ only in their P3 and P4 residues, thereby highlighting binding interactions distal to the active site threonine that control absolute substrate specificity of the complex. Comparisons of the CP-bound structures of MB1, MB2, and the natural products epoxomycin and TMC-95A also provide information regarding general binding modes for several classes of proteasome inhibitors.  相似文献   

7.
Epidermal growth factor receptor (EGFR) is an attractive target for tumor therapy because it is overexpressed in the majority of solid tumors and the increase in receptor expression levels has been linked with a poor clinical prognosis. Also it is well established that blocking the interaction of EGFR and the growth factors could lead to the arrest of tumor growth and possibly result in tumor cell death. A13 is a murine monoclonal antibody (mAb) that specifically binds to various sets of EGFR-expressing tumor cells and inhibits EGF-induced EGFR phosphorylation. We isolated human immunoglobulin genes by guided selection based on the mAb A13. Four different human single chain Fvs (scFvs) were isolated from from hybrid scFv libraries containing a human VH repertoire with the VL of mAb A13 and a human VL repertoire with the VH of mAb A13. All the 4 scFvs bound to EGFR-expressing A431 cells. One scFv (SC414) with the highest affinity was converted to IgG1 (ER414). The ER414 exhibited ~17 fold lower affinity compared to the A13 mAb. In addition the ER414 inhibited an EGF-induced tyrosine phosphorylation of EGFR with much lower efficacy compared to the A13 mAb and Cetuximab (Merck KgaA, Germany). We identified that the epitope of A13 mAb is retained in ER414. This approach will provide an efficient way of converting a murine mAb to a human mAb.  相似文献   

8.
9.
10.
Therapeutic monoclonal antibodies (mAbs), immunoglobulins, have been efficiently used in the treatment of many diseases, such as cancer, inflammatory and cardiovascular diseases, and organ transplantation. mAbs are glycoprotein molecules undergoing posttranslational modifications. Glycosylation is one of the posttranslational modifications. Different glycoforms that are important for maintaining the potency of mAb drugs show various biological activities. Therefore, the profile of the glycans and glycosylation sites should be determined to produce safe, good quality, consistent mAb drugs for human use. For this reason, simple, robust, accurate, and reproducible analytical methods need to be developed. In this article, chromatographic methods for the analysis of the glycoforms on the glycosylation site and the glycans in mAb biopharmaceuticals have been evaluated.  相似文献   

11.
Catalytic antibodies may be produced over the natural course of antibody-affinity maturation by placement of chemically reactive residues in antibody-active sites by somatic hypermutation or V-D-J-gene rearrangement. This hypothesis has received support from recent observations on the chemical reactivity of antibodies to vasoactive intestinal peptide (VIP), DNA, and steroid-and dinitrophenyl-esters. Recent studies reveal that monoclonal antibodies raised against the ground state of VIP can accelerate the cleavage of peptide bonds. The light-chain (L-chain) subunit of human autoantibodies display increased hydrolytic rate and diminished VIP-binding affinity compared to the parent antibody, consistent with increased turnover owing to weaker binding of the substrate ground state. These observations reveal an essential limitation of catalytic antibodies, i.e., large turnover rates may be associated with diminished substrate specificity. The hydrolysis of VIP by IgG purified by affinity chromatography from asthma patients and nonasthmatic controls was compared. IgG from the majority of asthma patients displayed VIP-hydrolyzing activity. Vmax values for IgG from asthmatics tended to be higher than those from the nonasthmatic group. In principle, catalysis by antibodies may be an important mediator of immunological defense, regulation, and autoimmune dysfunction. The verification of these possibilities will require studies that utilize efficient assays of antibody catalysis during experimental immunization and autoimmune disease, as well as mechanistic investigation of catalysis by antibodies and their subunits.  相似文献   

12.
13.
Spleen cells of mice rendered tolerant to human gamma globulin tolerogen by multiple low-dose injections were transferred with immune spleen cells into syngeneic irradiated recipients, then challenged with immunogen. The suppressive effect of the spleen from tolerant animals was abolished by anti-Lyt-2 + C′ treatment, which enabled also purified T cells to deliver a certain amount of help to immune B cells. It is therefore suggested that, at least in CBA strain, part of the T-cell tolerance depends upon continuous suppressor T-cell action in this system. Nevertheless, part of the functional incapacity of the helper population is probably due to direct paralysis. Thus both suppression and clonal inactivation are involved in multiple low-dose tolerance.  相似文献   

14.
A two dimensional electrophoresis database of a human Jurkat T-cell line   总被引:2,自引:0,他引:2  
About 2000 protein spots of human Jurkat T-cells were detected by high resolution two-dimensional gel electrophoresis (2-DE) and were characterized in terms of their isoelectric point and molecular mass. A 2-DE database was constructed and is available at http://www.mpiib-berlin.mpg.de/2D-PAGE/. At present the database contains 67 identified protein spots. These proteins were identified after tryptic digestion by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-mass spectrometry (DE-MALDI-MS). Proteins with a sequence coverage of at least 30% were introduced in the database. This sequence coverage could not always be obtained by using only the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) for the mass analysis. Therefore, an additional mass spectrum was recorded by using 2,5-dihydroxybenzoic acid (DHB). Usually, additional mass peaks were detected and together with the mass spectrum of CHCA this resulted in the desired sequence coverage.  相似文献   

15.
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 ?, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.  相似文献   

16.
A fully human antibody to tumor necrosis factor-alpha was expressed in the mammary glands of transgenic goats. The goat expressed antibody (gAb) is heterogeneous and has several isoforms due to typical cellular post-translational modifications. In addition, one post-secretional modification on gAb was discovered by high-resolution cation exchange chromatography (CIEX). The presence of these variants in the final product was shown to be dependent upon the initial milk storage and traditional purification methodologies used. These observations allow for the development of new sample recovery and purification processes to eliminate these variants. Various enzymatic treatments were used to characterize different gAb heavy chain C-terminal lysine and sialic acid variants. In addition, an unknown derivative with the additional mass of 140 Da was found in transgenic gAb using mass spectrometry (MS). The modification sites were identified as the N-termini of gAb light chains and heavy chains using Q-TOF MS. Characterization of transgenic gAb isoforms was facilitated by utilizing different enzymes, CIEX and MS techniques. A maleuric acid modification on the N-terminal portion of gAb was shown to be consistent with the available data characterizing this new derivative of transgenic gAb isoforms in goat milk.  相似文献   

17.
A simple immunoradiometric assay for human follicle stimulating hormone (hFSH) was developed using a pair of monoclonal antibodies obtained from commercial sources. The system developed makes use of a capture antibody covalently coupled to magnetisable cellulose, which is a more economical and stable immunosorbent as compared to the other solid phases. The detector antibody is labeled with125I using the chloramine-T oxidation method and purified by gel filtration. After initial cross-matching of the capture and detector antibodies, various assay parameters have been optimised. This assay does not show any significant cross reactivity with homologous hormones. A number of serum samples from men and women from reproductive age group was screened and compared with another commercially available kit (r=0.98). Sensitivity of the assay is 1.4 mIU/ml, interassay variation is <5% and intraassay variation around 15%. The assay is reproducible and sensitive enough for regular estimation of serum hFSH and is relatively inexpensive.  相似文献   

18.
The combinatorial fluorescent dapoxyl dye library was prepared by both solution- and solid-phase synthesis, generating 80 unique dapoxyl derivatives. A fluorescence-based screening toward human serum albumin (HSA) found one highly sensitive HSA binder ( A41-S) with over 55-fold intensity change. Displacement assay showed the selective binding of A41-S to the site I of HSA, addressing its potential to be a highly selective and sensitive HSA probe.  相似文献   

19.
The chemisorption of synthetic antigenic determinants of the human immunodeficiency virus on the surface of polystyrene microspheres with surface layers containing polystyrene-poly(vinylpyrrolidone) graft copolymers and carboxyl groups has been studied. The electrosurface properties of carrier particles before and after modification with peptides and agglutination of peptide-modified latexes with hyperimmune rabbit antisera have been investigated. It has been demonstrated that the stabilization of the structure of the hydrophilic surface layer via lengthening of polystyrene chains in the graft copolymers leads to an increase in the efficiency of exposure of antigenic determinants at the interface and improves the sensitivity of latex immunoreagents produced on their basis.  相似文献   

20.
The binding of wogonin to human serum albumin (HSA) has been studied by spectroscopic method including circular dichroism (CD), infrared spectra (IR) and fluorescence spectra. The fluorescence properties of HSA were examined in presence of wogonin and the fluorescence intensity of HSA was significantly decreased in the presence of wogonin. The binding parameters of wogonin were studied from the fluorescence decreasing of HSA by the fluoremetric titrations. The Stern-Volmer plots indicated that the binding of wogonin to HSA at 296, 303, 310 K is characterized by one binding site with the binding constant K(S-V) at 1.872 x 10(5), 1.561 x 10(5), 1.392 x 10(5), respectively, which are good agreement with the results from the Scatchard plots. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction, which were consistent with the result of molecule modelling study, and there are also a numbers of hydrogen bonds between wogonin and HSA. Furthermore, the displacement experiments indicate that wogonin can bind to the subdomain IIA, that is, the site I of HSA, which is also good agreement with the result of molecule modelling study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号