共查询到20条相似文献,搜索用时 14 毫秒
1.
Addition of 2 equiv of carbon dioxide to the ansa-zirconocene dinitrogen complex resulted in selective insertion into each zirconium nitrogen bond, forming a C2 symmetric dicarboxylated diazenido compound. Treatment with excess Me3SiI furnished the ansa-zirconocene diiodide along with the N,N'-dicarboxylated silylated hydrazine. New nitrogen-carbon bonds were also assembled by addition of methyl triflate. Tri- and tetrasubstituted hydrazines could be formed by treatment with water and Me3SiI, respectively. The regiochemistry of the N2 carboxylation is controlled by the ansa-cyclopentadienyl ligand where the sterically demanding tert-butyl substituents and the C2 symmetry of the dimer dictates the stereochemistry of CO2 insertion. These results demonstrate the ability of zirconium dinitrogen compounds to participate in heterocumulene insertion chemistry. 相似文献
2.
Shusaku Maeda Takakazu Yamamoto Takaki Kanbara 《Journal of organometallic chemistry》2007,692(24):5495-5500
A new pincer ruthenium complex (1; [RuL1(tpy)](PF6); L1 = 1,3-di(2-imidazoline-2-yl)benzene, tpy = 2,2′:6′,2″-terpyridine) having a κ3NCN pincer ligand with two imidazoline units and related ruthenium complexes were synthesized and characterized. The imidazoline units of 1 were oxidized in air to give an imidazole-ligated pincer complex (2; [RuL2(tpy)](PF6); L2 = 1,3-di(2-imidazolyl)benzene). Results of the 1H NMR spectroscopic and cyclic voltammetric studies of the complexes indicate that the σ-donor character of the pincer ligand of 1 induces the Ru-promoted oxidative dehydrogenation of coordinated imidazoline moieties to imidazole units with oxygen in air. 相似文献
3.
The dinitrogen complex ([NPN]Ta)2(mu-eta1:eta2-N2)(mu-H)2, 1, (where [NPN] = (PhNSiMe2CH2)2PPh) undergoes hydrosilylation with primary and secondary alkyl- and arylsilanes, giving a new N-Si bond and a new terminal tantalum hydride derived from one Si-H unit. Various primary silanes can be employed to give isolable complexes of the general formula ([NPN]TaH)(mu-N-N-SiH(n)R(3-n))(mu-H)2(Ta[NPN]) (5, R=Bu, n = 2; 9, R=Ph, n = 2). Analogous complexes featuring secondary silanes are not isolable, because these products, and 5 and 9, are uniformly unstable toward reductive elimination of bridging hydrides as H2, followed by cleavage of the N-N bond to give ([NPN]TaH)(mu-N)(mu-N-SiH(n)R(3-n))(Ta[NPN]) (6, R=Bu, n = 2; 10, R=Ph, n = 2; 15, R=Ph, n = 1; 16, R=Ph and Me, n = 1). The bridging nitrido ligand in these complexes is itself a substrate for a second hydrosilylation when n = 2, and schemes leading to Ta(IV) complexes of the general formula ([NPN]Ta)2(mu-N-SiH2R)(mu-N-SiH2R') via elimination of H2 are reported (4, R=R'=Bu; 12, R=Bu, R' = Ph; 13, R=Bu, R' = CH2CH2SiH3). At this point, the general reaction manifold for these compounds ramifies, with distinct outcomes occurring for different R groups-[NPN] ligand amide migration from Ta to RSi affords 11, whereas stable complex 6 rearranges to give 7, in the presence of excess silane. Ethanediylbissilane reacts with 1 to give 14, isostructural to 7. 相似文献
4.
Nidhi Vyas Bhawana Pandey Animesh Ojha Abhinav Grover 《International journal of quantum chemistry》2019,119(24):e26025
Conversion of free nitrogen to ammonia is a required chemical reaction for both biologically and industrially but their mechanism, specifically the attachment of electron and proton transfer during the cycle, is still doubtful. In this view, a thorough knowledge of the mechanism is crucial. In this article, we employ a density functional method on [(TPB)FeN2]−, the iron-dinitrogen complex carrying the tris(phosphine)borone (TPB) ligand, for the ammonia production with the inclusion of electrons and protons. The electronic structures, reactivity, and mechanistic possibilities have been extensively explored using the B3LYP functional. Both asymmetric and symmetric pathways in addition to the possible intermediates species and transition states are considered here. Our results conclude tremendously small energy barrier of 3.5 kJ/mol for the first protonation (S = 1/2) for the N─H bond activation by the [(TPB)FeN2]− species. However, high activation barrier for the third protonation was estimated to be 78.5 kJ/mol, which is explained by the high energy of the unoccupied δx2-y2 orbital in 1ts4 species. The computed spectroscopic parameters such as absorption, electron paramagnetic resonance, and Mössbauer also established the electronic structure details of the species. The calculated parameters are compatible with the experimental results. 相似文献
5.
A. A. Sidorov I. G. Fomina V. V. Nesterov S. E. Nefedov I. L. Eremenko I. I. Moiseev 《Russian Chemical Bulletin》1999,48(3):573-577
The reactions of diaminomaleonitrile H2NC(CN)=C(CN)NH2 (1) with the nine-nuclear carboxylate nickel(II) complex Ni9(HOOCCMe3)4(μ4-OH)3(μn-OOCCMe3)12 (under an inert atmosphere or in air) and with K2[PtX4] (in air) afforded the bis-chelate mononuclear complexes M[HNC(CN)C(CN)NH]2 (M=Ni (2) and Pt (3), respectively). The structural features of compounds 1, 2, and 3, which were determined by X-ray diffraction analysis, are discussed. 相似文献
6.
Fomina I. G. Talismanov S. S. Sidorov A. A. Ustynyuk Yu. A. Nefedov S. E. Eremenko I. L. Moiseev I. I. 《Russian Chemical Bulletin》2001,50(3):515-519
The reactions of N-methyl-ortho-phenylenediamine (1) with K2MCl4 (M = Pd or Pt) were investigated. At the first stage, the tetraamine dicationic complexes [(C6H4(NH2)(NMeH))2M]Cl2 were formed. Oxidation of these compounds with atmospheric oxygen in an alkaline medium afforded the neutral semiquinonediimine complexes [C6H4(NH)(NMe)]2M. The structures of the {[(C6H4)(NH2)(NHMe)]2Pd}Cl2 and [C6H4(NH)(NPh)]2Pt complexes were established by X-ray diffraction analysis. 相似文献
7.
8.
Exposure of the isolable zirconocene sandwich compounds, (eta(5)-C5Me5)(eta(5)-C9H5-1-R(1)-3-R(2))Zr (R(1) = Me, (i)Pr, (t)Bu; R(2) = Me) to one atmosphere of dinitrogen resulted in N2 coordination. X-ray diffraction and NMR spectroscopy establish that the resulting dimeric dinitrogen compounds contain an unusual mu2,eta(2)-bridging indenyl ring and a weakly activated N2 ligand. N2 coordination from the isolable zirconium sandwich compounds is extremely sensitive to the number and size of the indenyl subsituents. Compounds bearing two [(i)Pr] or three methyl substituents are stable as eta(9) sandwich compounds for weeks under dinitrogen likely due to the inability to dimerize through a two-atom N2 bridge. Performing the reduction of (eta(5)-C5Me5)(eta(5)-C9H5-1-R(1)-3-R(2))ZrCl2 (R(1) = (i)Pr, (t)Bu; R(2) = Me; R(1) = R(2) = SiMe3) under an N2 atmosphere produced a different outcome; rare examples of side-on, end-on zirconium dinitrogen compounds were isolated and in one case, crystallographically characterized. Protonolysis studies with weak Br?nsted acids were used to evaluate the relative activation of the bridging dinitrogen ligands. 相似文献
9.
The addition reactions of CCl3 radicals with cis-C2Cl2H2, trans-C2Cl2H2, and C2Cl3H in liquid cyclohexane–CCl4 mixtures were studied between 323 and 448 K. The Arrhenius parameters of these reactions were competitively determined versus H-atom transfer from cyclohexane and addition to C2Cl4. The present data and the data obtained in previous liquid and gas phase studies show that the reactivities displayed in addition reactions of different radicals with chloroethylenes reflect primarily variations in activation energies rather than in A factors. The activation energies for the addition of CCl3, CF3, and CH3 radicals to chloroethylenes appear, to a large extent, to be determinedby the stability of the adduct radicals. Comparison of the reactivity trends in the addition reactions of chloro- and fluoro-substitutedethylenes indicates that these two electron-withdrawing substituentshave a converse effect on the reactivity of electrophilic radicals. This behavior is ascribed to the strong mesomeric effect of vinylic chlorosubstituents. 相似文献
10.
11.
《Journal of photochemistry and photobiology. A, Chemistry》2007,185(2-3):295-300
By using suspended platinized titanium dioxide (Pt-TiO2) as a photocatalyst in an NH3 aqueous solution, NH3 was photodecomposed into H2 and N2. The amount of loaded Pt was changed between 0 and 2.0 wt% and the reaction was conducted under irradiation in an Ar atmosphere. In the Pt loading between 0 and 0.5 wt% the H2 and N2 evolution increased linearly with the Pt amount and the H2/N2 molar ratio was about 3:1. The evolution of H2 and N2 reached a maximum at 0.5 wt% Pt, and then decreased probably due to a filter effect by the Pt. The effect of pH on the photodecomposition of NH3 in the presence of Pt-TiO2 under Ar was investigated at pH from 0.68 to 13.7. The evolution of H2 increased steeply at the pH from 9 to 10 showing that the dissociation of NH4+ to free NH3 is important for the photodecomposition (pKa of NH4+/NH3 is 9.24). The time-course of H2 and N2 evolution in a 59 mM NH3 aqueous solution during 53 h irradiation gave the photodecomposition yield of 21.6%. The effect of RuO2 loading as a co-catalyst for the TiO2 or Pt-TiO2 was investigated showing that the RuO2 does not work as a H+ reduction catalyst. The activity of SrTiO3 used instead of TiO2 was only small, and the H2/N2 ratio (0.64) was very small showing that the Pt-SrTiO3 is not a good photocatalyst to decompose NH3. A TiO2/FTO nanoporous film photoanode was used in combination with a Pt counter electrode instead of the Pt-TiO2 photocatalyst, leading also to photodecomposition of NH3 to produce H2 and N2 at 3:1 ratio. 相似文献
12.
Reduction of [P 2N 2]ZrCl 2 (where P 2N 2 = PhP(CH 2SiMe 2NSiMe 2CH 2) 2PPh) by KC 8 under N 2 generates the dinuclear dinitrogen complex ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) and impurities in varying yields depending on the solvent and temperature. The toluene complex [P 2N 2]Zr(eta (6)-C 7H 8) along with a dinuclear species with bridging PC 6H 5 groups is observable. Also observable in the crude reaction mixtures is the mu-oxodiazenido derivative, ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2H 2)(mu-O), due to reaction with trace H 2O. This paper reports the full details of the preparation of ([P 2N 2]Zr) 2(mu-eta (2):eta (2)-N 2) including an improved method that involves reduction at low temperatures in a tetrahydrofuran solvent. Also reported is a reproducible synthesis of the oxodiazenido complex along with the X-ray structures of the dinitrogen complex and the oxodiazenido derivative. 相似文献
13.
Addition of ethoxalyl chloride (ClCOCOOEt) to terminal alkynes at 60 degrees C in the presence of a rhodium(I)-phosphine complex catalyst chosen from a wide range affords 4-chloro-2-oxo-3-alkenoates regio- and stereoselectively. Functional groups such as chloro, cyano, alkoxy, siloxy, and hydroxy are tolerated. The oxidative addition of ethoxalyl chloride to [RhCl(CO)(PR(3))(2)] proceeds readily at 60 degrees C or room temperature and gives [RhCl(2)(COCOOEt)(CO)(PR(3))(2)] (PR(3) = PPh(2)Me, PPhMe(2), PMe(3)) complexes in high yields. The structure of [RhCl(2)(COCOOEt)(CO)(PPh(2)Me)(2)] was confirmed by X-ray crystallography. Thermolysis of these ethoxalyl complexes has revealed that those ligated by more electron-donating phosphines are fairly stable against decarbonylation and reductive elimination. [RhCl(2)(COCOOEt)(CO)(PPh(2)Me)(2)] reacts with 1-octyne at 60 degrees C to form ethyl 4-chloro-2-oxo-3-decenoate. The catalysis is therefore proposed to proceed by oxidative addition of ethoxalyl chloride, insertion of an alkyne into the Cl--Rh bond of the resulting intermediate, and reductive elimination of alkenyl-COCOOEt. 相似文献
14.
《Journal of Coordination Chemistry》2012,65(15):1387-1393
Complexes of general formula [ReOX2{(C5H4N)CH(O)CH2(C5H4N)}] (X?=?Cl,?I) were prepared by reaction of trans-[ReOCl3(PPh3)2] and trans-[ReOI2(OEt)(PPh3)2] with cis-1,2-di-(2-pyridyl)ethylene (DPE) in ethanol and benzene in air. The coordinated DPE ligand undergoes addition of water at the ethylenic carbon atoms, and the (C5H4N)CH(O)CH2(C5H4N) moiety acts as a uninegative terdentate N,O,N-donor ligand. X-ray crystal structures of both complexes have been determined and show distorted octahedral geometry at the rhenium(V) centre. 相似文献
15.
The ability of an eta2-H2 ligand to participate in intermolecular hydrogen bonding in solution has long been an unresolved issue. Such species are proposed to be key intermediates in numerous important reactions such as the proton-transfer pathway of H2 production by hydrogenase enzymes. We present the synthesis of several new water-soluble ruthenium coordination complexes including an eta2-H2 complex that is surprisingly inert to substitution by water. The existence of dihydrogen hydrogen bonding (DHHB) was experimentally probed by monitoring the chemical shift of H-bonded Ru-(H2) complexes using NMR spectroscopy, by UV-visible spectroscopy, and by monitoring the rotational dynamics of a hydrogen-bonding probe molecule. The results provide strong evidence that coordinated H2 can indeed participate in intermolecular hydrogen bonding to bulk solvent and other H-bond acceptors. 相似文献
16.
17.
We have synthesized a triamidoamine ligand ([(RNCH2CH2)3N]3-) in which R is 3,5-(2,4,6-i-Pr3C6H2)2C6H3 (HexaIsoPropylTerphenyl or HIPT). The reaction between MoCl4(THF)2 and H3[HIPTN3N] in THF followed by 3.1 equiv of LiN(SiMe3)2 led to formation of orange [HIPTN3N]MoCl. Reduction of [HIPTN3N]MoCl with magnesium in THF under dinitrogen led to formation of salts that contain the {[HIPTN3N]Mo(N2)}- ion. The {[HIPTN3N]Mo(N2)}- ion can be oxidized by zinc chloride to give [HIPTN3N]Mo(N2) or protonated to give [HIPTN3N]Mo-N=N-H. Other relevant compounds that have been prepared include {[HIPTN3N]Mo-N=NH2}+, [HIPTN3N]MoN, {[HIPTN3N]Mo=NH}+, and {[HIPTN3N]Mo(NH3)}+. (The anion is usually {B(3,5-(CF3)2C6H3)4}- = {BAr'4}-.) Reduction of [HIPTN3N]Mo(N2) with CoCp2 in the presence of {2,6-lutidinium}BAr'4 in benzene leads to formation of ammonia and {[HIPTN3N]Mo(NH3)}+. Preliminary X-ray studies suggest that the HIPT substituent creates a deep, three-fold symmetric cavity that protects a variety of dinitrogen reduction products against bimolecular decomposition reactions, while at the same time the metal is left relatively open toward reactions near the equatorial amido ligands. 相似文献
18.
Addition of the dilithium salt, ortho-(Me3SiNLi)2C6H4, to ZrCl4 affords a base-free, D2d-symmetric complex Zr(IV)[ortho-(Me3SiN)2C6H4]2 (2), with rigorously planar ortho-phenylenediamine ligands. Lewis acidic 2 readily coordinates donor ligands such as NHEt2 to give the five-coordinate complex, Zr(IV)(NHEt2)[ortho-(Me3SiN)2C6H4]2 (3), which is also accessible by the reaction of Zr(NEt2)4 with 2 equiv of ortho-(Me3SiNH)2C6H4. Aryl azides react with 2 and 3 to give an unusual tetra-azametallacycle complex, 4, via 1,2-addition of a ligand N-Si bond to the organic azide. An X-ray crystal structure of 4 reveals a planar, five-membered metallacycle comprising the zirconium atom, one nitrogen atom of the ortho-(Me3SiN)2C6H4 ligand, and all three nitrogen atoms of the aryl azide. 相似文献
19.
20.
Multiple pathways for dinitrogen activation during the reduction of an Fe Bis(iminepyridine) complex
Reduction of the bis(iminopyridine) FeCl(2) complex {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}FeCl(2) using NaH has led to the formation of a surprising variety of structures depending on the amount of reductant. Some of the species reported in this work were isolated from the same reaction mixture, and their structures suggest the presence of multiple pathways for dinitrogen activation. The reaction with 3 equiv of NaH afforded {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(20PhN-C=CH(2)](C(5)H(3)N)}Fe(micro,eta(2)-N(2))Na (THF) (1) containing one N(2) unit terminally bound to Fe and side-on attached to the Na atom. In the process, one of the two imine methyl groups has been deprotonated, transforming the neutral ligand into the corresponding monoanionic version. When 4 equiv were employed, two other dinitrogen complexes {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(2)PhN-C=CH(2)](C(5)H(3)N)}Fe(micro-N2)Na(Et(2)O)(3) (2) and {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe(micro-N(2))Na[Na(THF)(2)] (3) were obtained from the same reaction mixture. Complex 2 is chemically equivalent to 1, the different degree of solvation of the alkali cation being the factor apparently responsible for the sigma-bonding mode of ligation of the N(2) unit to Na, versus the pi-bonding mode featured in 1. In complex 3, the ligand remains neutral but a larger extent of reduction has been obtained, as indicated by the presence of two Na atoms in the structure. A further increase in the amount of reductant (12 equiv) afforded a mixture of {2-[2,6-(iPr)(2)PhN=C(CH(3))]-6-[2,6-(iPr)(2)PhN-C=CH(2)](C(5)H(3)N)}Fe-N(2) (4) and [{2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe-N(2)](2)(micro-Na) [Na(THF)(2)](2) (5) which were isolated by fractional crystallization. Complex 4, also containing a terminally bonded N(2) unit and a deprotonated anionic ligand bearing no Na cations, appears to be the precursor of 1. The apparent contradiction that excess NaH is required for its successful isolation (4 is the least reduced complex of this series) is most likely explained by the formation of the partner product 5, which may tentatively be regarded as the result of aggregation between 1 and 3 (with the ligand system in its neutral form). Finally, reduction carried out in the presence of additional free ligand afforded {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe(eta(1)-N(2)){2,6-[2,6-(iPr)(2)PhN=C(CH(3))](20(NC(5)H(2))}[Na(THF)(2)] (6) and {2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(C(5)H(3)N)}Fe{2,6-[2,6-(iPr)(2)PhN=C(CH(3))](2)(NC(5)H(2))}Na(THF)(2)) (7). In both species, the Fe metal is bonded to the pyridine ring para position of an additional (L)Na unit. Complex 6 chemically differs from 7 (the major component) only for the presence of an end-on coordinated N(2). 相似文献