首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A thin-layer chromatographic (TLC) method with densitometric quantitation using the absorption reflectance mode at 280 nm was developed and validated for the determination of chloramphenicol residues in controlling pharmaceutical equipment cleanliness. Simulated samples at residue levels 0.5, 1, and 1.2 mg/m2 were prepared by spreading the calculated amount of chloramphenicol solution on a 10 dm2 stainless steel surface. After evaporation of the solvent, the residue was removed by 2 methanol-wetted cotton swabs, which were then extracted with methanol. The extract was applied on a high-performance TLC (HPTLC) silica gel F254 plate together with standards ranging from 10 to 60 ng. Plates were developed in a horizontal developing chamber from both sides (36 applications per plate) by using n-hexane-ethyl acetate (35 + 65, v/v) as developing solvent. The mean recovery (n=6) at 1 mg/m2 was 95.8%, and the coefficient of variation was 5.8%. The absolute detection limit was 3 ng, and the quantitation limit 10 ng. The method detection limit was 0.3 mg/m2 by swabbing 2.5 dm2 and 0.075 mg/m2 by swabbing 10 dm2. Chloramphenicol was stable on the plate 2 h before and 24 h after development. Additionally, it was stable during 7 days storage on the cotton swabs in the solvent at room temperature and in diluted standard solution stored in darkness at 4 degrees C. The method can be applied to routine control of pharmaceutical equipment cleanliness by sampling from the stainless steel surface areas of 2.5 to 10 dm2, and an acceptable residue limit of 1 mg/m2.  相似文献   

2.
An HPTLC method with densitometric quantification using fluorescence at 313 nm was developed and validated for the determination of ofloxacin residue in controlling pharmaceutical equipment cleanliness. Simulated samples at a residue level of 1 mg/m2 were prepared by spreading the calculated amount of ofloxacin solution on 1, 5, and 10 dm2 stainless steel surfaces. After evaporation of the solvent, the residue was removed by two ethanol wetted cotton swabs, which were thereafter extracted with the mixture of ethanol and Na2EDTA-water solution at pH 11 for 15 min with sonication. The extract and standards were applied on HPTLC silica gel 60 plates and then developed in a horizontal developing chamber from both sides using ethanol-conc. ammonia (4+1, v/v) as the mobile phase. The mean recovery (n=6) at 1 mg/m2 from 1, 5, and 10 dm2 was 95.3, 88.6, and 89.7% with the CV values 3.78, 4.41, and 4.97%, respectively. The absolute detection limit was 0.6 ng and the quantitation limit was 2 ng, but it was shown that these can be improved by immersion of the developed plate into a solution of liquid paraffin-n-hexane (1+2, v/v) to approximately 0.25 and 0.9 ng, respectively. The LOD of the method using detection without paraffin-n-hexane was 3, 0.6, and 0.3 microg/m2 by swabbing 1, 5, and 10 dm2, respectively. The method can be applied to routine control of pharmaceutical equipment cleanliness by sampling from stainless steel surface areas of 1 to 10 dm2 with acceptable residue limit/surface of 1 mg/m2.  相似文献   

3.
A method is described for the determination of clomazone residues in surface water by high-performance liquid chromatography with UV detection. The method involves solid-phase extraction with C18 extraction tubes. Clomazone was separated on a C18 column with a mobile phase of methanol-water (65:35, v/v) at pH 4.0 and a flow-rate of 1.0 ml/min. After optimization of the extraction and separation conditions, the method was validated. The method developed can be used for determination of clomazone in surface water, at the limit of 0.1 mcirog/l set by the European Union drinking water directive, with a 400-fold preconcentration.  相似文献   

4.
A simple isocratic, RP-ultra-performance LC method was developed and validated for the determination of lacidipine, three process impurities formed during synthesis, and three degradation products present in drug substance and the drug product. An efficient chromatographic separation was achieved on an Acquity BEH C18 column using pH 4.5 ammonium acetate-acetic acid buffer-methanol (70 + 30, v/v) mobile phase. The monitoring wavelength was 240 nm, and the flow rate 0.25 mL/min. Forced degradation studies using acid, alkali, peroxide, water, heat, and light were conducted, and all impurities were separated. The method was validated successfully for specificity, precision, linearity, accuracy, LOD, LOQ, and robustness, according to International Conference on Harmonization guidelines. The linearity of the calibration curve for lacidipine and each impurity was found to be very good (r2 > 0.999). This method is shown to be suitable for analysis of lacidipine to evaluate the quality of drug substance and a drug product.  相似文献   

5.
A selective, precise and new high-performance liquid chromatographic method for the analysis of loperamid hydrochloride in pharmaceutical formulations was developed and validated. The mobile phase consisting buffer (sodium-octansulphonate, triethylamine and ammonium hydroxide) in water: acetonitriie (45: 55, v/v) (pH 3.2). The absorbance was monitored with a DAD detector at 226 nm. The flow rate was 1.5 cm3 min−1. The linearity (r = 0.9947) and the recovery (98.58–100.42%) were found to be satisfactory. The detection and quantitation limits were found to be 0.95 and 3.12 μg cm−3. The results demonstrated that the procedure was accurate, precise and reproducible. It can be suitably applied for the estimation of lopera-mid hydrochloride in pharmaceutical formulations. The article is published in the original.  相似文献   

6.
An isocratic reversed-phase high-performance liquid chromatographic method has been developed for separation and simultaneous determination of COX-2 inhibitors, viz., celecoxib, rofecoxib, valdecoxib, nimesulide and nabumetone, using 4-chloro-2-nitroaniline as internal standard. Good chromatographic separation was achieved using a reversed-phase Inertsil C(18) column with mobile phase consisting of methanol and 0.05% aqueous glacial acetic acid (68:32 v/v) using photodiode array (PDA) detector at 230 nm. It was validated with respect to accuracy, precision, linearity, limit of detection and quantification. The linearity range was found to be 1.0--20 microg/mL and the percentage recoveries were between 97.55 and 100.14. The method is suitable not only for the estimation of active ingredients in pharmaceutical dosage forms but also in vitro estimations in human plasma. It is simple, rapid, selective and capable of detecting and determining COX-2 inhibitors with a detection limit of 0.127--1.040 microg/mL simultaneously.  相似文献   

7.
Hydroxymethylfurfural (HMF) and alpha-ketoglutaric acid (KG) have been recently investigated as potential cancer cell damaging agents. We herein report for the first time a validated quantitative assay for their simultaneous determination in human plasma which is amenable to be applied in the future screening of the target compounds in human probands in order to properly design a targeted chemotherapeutic regimen for certain types of malignant tumors.A simple liquid chromatographic method in conjunction to derivatization after a two-step optimized solid phase clean-up procedure is described. The method is based on the reaction of HMF and KG with 2-nitrophenylhydrazine or 2,4-dinitrophenylhydrazine in an aqueous environment. Reaction conditions were studied with respect to pH, reagent volume, reaction temperature and time. Exact testing of such parameters beside careful selection of the mobile phase composition rendered feasible the quantification of the chemically significantly differing analytes along a single chromatographic run. The formed derivatives could be separated isocratically by reversed-phase LC on a C8-column. Detection in the UV and in the visible range is possible. Results showed good recovery and reproducibility with detection limits (S/N = 3) down to 2 picomoles analyte on column. Resolution of the syn and anti geometric isomers of the HMF and KG derivatives is possible. The isomeric ratio in relation to the reaction pH is discussed.  相似文献   

8.
A simple, precise, and accurate isocratic RP-HPLC method was developed and validated for determination of eprosartan in bulk drug and tablets. Isocratic RP-HPLC separation was achieved on a Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) using the mobile phase 0.5% formic acid-methanol-acetonitrile (80 + 25 + 20, v/v/v, pH 2.80) at a flow rate of 1.0 mL/min. The retention time of eprosartan was 7.64 +/- 0.05 min. The detection was performed at 232 nm. The method was validated for linearity, precision, accuracy, robustness, solution stability, and specificity. The method was linear in the concentration range of 10-400 microg/mL with a correlation coefficient of 0.9999. The repeatability for six samples was 0.253% RSD; the intraday and interday precision were 0.21-0.57 and 0.33-0.71% RSD, respectively. The accuracy (recovery) was found to be in the range of 99.86-100.92%. The drug was subjected to the stress conditions hydrolysis, oxidation, photolysis, and heat. Degradation products produced as a result of the stress conditions did not interfere with detection of eprosartan; therefore, the proposed method can be considered stability-indicating.  相似文献   

9.
A new, simple, rapid, and precise RP-HPLC method has been developed and validated for the determination of five cephalosporins, namely, cefalexin, cefoperazone, ceftriaxone, ceftazidime, and cefepime. The method has been applied successfully for simultaneous determination of cefalexin in a binary mixture with sodium benzoate in a suspension, and cefoperazone in a binary mixture with sulbactam in vials. Chromatographic separation was achieved on a Waters microBondapak C18 column (250 x 4.6 mm id, 10 pm particle size) using the mobile phase monobasic potassium phosphate (50 mM, pH 4.6)-acetonitrile (80 + 20, v/v) with UV detection. A flow rate of 1 mL/min was applied. Linearity, accuracy, and precision were found to be acceptable over the concentration range of 30-300, 3-30, and 15-120 microg/mL for the studied cephalosporins, sodium benzoate, and sulbactam, respectively. The optimized method proved to be specific, robust, and accurate for QC of the cited drugs in their pharmaceutical preparations.  相似文献   

10.
A stability indicating, reversed-phase ion-pair high-performance liquid chromatographic method was developed and validated for the determination of risedronate in pharmaceutical dosage forms. The determination was performed on a BDS C18 analytical column (250 mm × 4.6 mm i.d., 5 μm particle size); the mobile phase consisted of 0.005 M tetrabutylammonium hydroxide and 0.005 M pyrophosphate sodium (pH 7.0) mixed with acetonitrile in a ratio (78:22, v/v) and pumped at a flow rate 1.00 mL min−1. The ultraviolet (UV) detector was operated at 262 nm. The retention times of magnesium ascorbyl phosphate, which was used as internal standard and risedronate were 4.94 and 5.95 min, respectively. The calibration graph was ranged from 2.50 to 20.00 μg mL−1, while detection and quantitation limits were found to be 0.48 and 1.61 μg mL−1, respectively. The intra- and inter-day percentage relative standard deviations, %R.S.D., were less than 5.9%, while the relative percentage error, %Er, was less than 0.4%. The method was applied to the quality control of commercial tablets and content uniformity test and proved to be suitable for rapid and reliable quality control.  相似文献   

11.
This paper describes the development and validation of a new, simple, fast, and sensitive liquid chromatographic method for the determination of the antihistamine fexofenadine. Although widely used in the treatment of allergic diseases, fexofenadine is not listed in any pharmacopeia, and there are few methods in the literature for its quantitation in pharmaceutical dosage forms. In this work, a LiChrospher 100 RP-18 (250 x 4.0 mm, 5 microm) column was used as the stationary phase, and acetonitrile-5mM ammonium acetate buffer (50 + 50, v/v) at pH 3.2 was the mobile phase. Through the evaluation of the analytical parameters, it was shown that the method is linear (r = 0.9999) at concentrations ranging from 20.0 to 80.0 microg/mL, precise (intraday relative standard deviation [RSD] values = 0.85, 0.40, and 0.81%; interday RSD = 0.77%), accurate (mean recovery = 99.05%), specific, and robust. The detection and quantitation limits are 0.3409 and 1.033 microg/mL, respectively. These low values show the good sensitivity of the proposed method.  相似文献   

12.
A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of five aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile and a buffer of NaH2PO4–H3PO4 (pH 1.5, containing 10 mM NaH2PO4) (85:15, v/v) as a mobile phase at a flow rate of 1 mL min−1. Aromatic amines were detected by UV absorbance at 254 nm. The linear range of amines was good (r2 > 0.998) and limit of detection (LOD) within 0.02–0.2 mg L−1 (S/N = 3). The retention mechanism for the analytes under the optimum conditions was determined to be a combination of adsorption, partition and ionic interactions. The proposed method was applied to the environmental water samples. Aromatic amines were isolated from aqueous samples using solid-phase extraction (SPE) with Oasis HLB cartridges. Recoveries of greater than 75% with precision (RSD) less than 12% were obtained at amine concentrations of 5–50 μg L−1 from 100 mL river water and influents from a wastewater treatment plant (WWTP). The present HILIC technique proved to be a viable method for the analysis of aromatic amines in the environmental water samples.  相似文献   

13.
Trenbolone acetate is a synthetic testosterone analog registered for use in a number of countries as a growth-promoting hormone, applied as an implant in the ears of feedlot cattle. The method is intended for the detection and quantitation of trace amounts of alpha- and beta-trenbolone in bovine tissues (muscle, liver) by liquid chromatography (LC) with UV detection and eliminates the use of the structural analog, 19-nortestosterone, as an internal standard. Trenbolone residues are extracted from tissues that have been homogenized in sodium acetate with a 3-phase liquid-liquid extraction by adding a mixture of water-acetonitrile-dichloromethanehexane, with trenbolone residues preferentially partitioned into the middle acetonitrile layer. The extract is passed through solid-phase extraction cartridges (both C18 and silica gel) using, respectively, methanol-water and acetone-toluene as eluents. Reversed-phase high-performance LC separation is performed, an octadecyl-bonded column with methanol-acetonitrile-water used as mobile phase for sample analysis. The limit of detection is 0.2 ng/g in muscle tissue and 0.6 ng/g in liver tissue, with coefficients of variation of 3.5-12.1% for alpha- and beta-trenbolone at concentrations from 0.2 to 4.0 ng/g fortified in muscle and 3.3-26.0% from liver fortified at 0.6-10.0 ng/g. Absolute recoveries of 40-130% were observed, but the use of fortified matrix curves eliminated recovery correction. Critical control points were identified in a pH adjustment step and an evaporation step during method validation, which included ruggedness testing. Analysis of incurred tissues (bovine liver and muscle) stored at -20 degrees C for over 25 weeks did not identify any significant loss of residues.  相似文献   

14.
A novel stability-indicating high-performance liquid chromatographic (HPLC) method was developed and validated for assay and determination of impurities of emtricitabine in drug substance. Emtricitabine was found to be degraded under acidic, alkaline, and oxidative stress conditions and to be more labile under oxidative conditions. The drug proved to be stable to dry heat and photolytic degradation. Resolution of major and minor degradation impurities was achieved on an Intersil ODS-3V column utilizing 10 mM sodium phosphate buffer and methanol (85:15) as mobile phase. Detection was at 280 nm. Validation studies were performed as per ICH recommended conditions. The developed method was found to be linear, accurate, specific, selective, precise, and robust.  相似文献   

15.
A sensitive and rapid liquid chromatographic/tandem mass spectrometric method was developed and validated for the determination of sertraline in human plasma. The analyte and internal standard (IS, diphenhydramine) were extracted with 3 mL of diethyl ether/dichloromethane (2:1, v/v) from 0.25 mL plasma, then separated on a Zorbax Eclipse XDB C18 column using methanol/water/formic acid (75:25:0.1, v/v/v) as the mobile phase. The triple quadrupole mass spectrometry was applied via an atmospheric pressure chemical ionization (APCI) source for detection. The fragmentation pattern of the protonated sertraline was elucidated with the aid of product mass spectra of isotopologous peaks. Quantification was performed using selected reaction monitoring of the transitions of m/z 306 --> 159 for sertraline and m/z 256 --> 167 for the IS. The method was linear over the concentration range of 0.10-100 ng/mL. The intra-day and inter-day precisions, expressed by relative standard deviation, were both less than 6.7%. Assay accuracies were within +/-6.9% as terms of relative error. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.10 ng/mL with a precision of 8.3% and an accuracy of 9.6%. The validated method has been successfully applied for the pharmacokinetic study and bioequivalence evaluation of sertraline in 18 healthy volunteers after a single oral administration of 50 mg sertraline hydrochloride tablets.  相似文献   

16.
A simple, precise, and accurate isocratic reversed-phase (RP) stability-indicating column high-performance liquid chromatographic (HPLC) assay method was developed and validated for determination of nebivolol in solid pharmaceutical dosage forms. Isocratic RP-HPLC separation was achieved on a Phenomenex Luna C8 (2) column (250 mm x 4.6 mm id, 5 microm particle size) using mobile phase composed of acetonitrile-pH 3.5 phosphate buffer (35 + 65, v/v) at a flow rate of 1.0 mL/min, and detection was performed at 280 nm using a photodiode array detector. The drug was subjected to oxidation, hydrolysis, photolysis, and heat to apply stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness, and solution stability. The method was linear in the drug concentration range of 40-160 microg/mL with a correlation coefficient of 0.9999. The repeatability relative standard deviation (RSD) for 6 samples was 0.69%, and the intermediate precision (RSD) for 6 samples was 1.39%. The accuracy (recovery) was between 98.57 and 99.55%. Degradation products produced as a result of stress studies did not interfere with detection of nebivolol, and the assay can thus be considered stability-indicating.  相似文献   

17.
In this study, a new method for the determination of 12 nitroimidazoles and their hydroxymetabolites (metronidazole, hydroxymetronidazole, dimetridazole, ronidazole, hydroxydimetridazole, ipronidazole, hydroxyipronidazole, carnidazole, ornidazole, secnidazole, ternidazole, tinidazole) in beeswax has been developed and validated. The optimized sample preparation procedure included melting and dilution of beeswax in a mixture of n‐hexane and isopropanol followed by extraction with 2% acetic acid. The extracts were purified on strong cation exchange based solid‐phase extraction cartridges and evaporated in a vacuum system with vortex motion. The separation and detection of the nitroimidazoles in the beeswax extracts were achieved within 12 min by liquid chromatography tandem mass spectrometry using a pentafluorophenyl analytical column and applying a gradient elution with acetonitrile and 0.01% acetic acid as mobile phases. The method performance characteristics were evaluated at three concentration levels (1, 2, and 5 μg/kg) and the method was found to be suitable for determination of all tested nitroimidazoles. The limits of detection and quantification were 0.2–0.5 and 0.5–1 μg/kg, respectively. The recoveries varied from 71.2 to 104.9% while the relative standard deviations were less than 13.8% under the intermediate precision conditions.  相似文献   

18.
Atenolol (AT) and metoprolol (MT) are predominantly used in the treatment of angina pectoris, certain arrhythmias, systemic hypertension, and several other cardiovascular disorders. Both compounds are produced commercially in the racemic form, although the S-form is responsible for the desired biological effect. This paper describes a simple, rapid, precise, and accurate method for separating the enantiomers of AT and MT. AT isomers are separated by using a Chiralcel OD column (250 x 4.6 mm, 10 microm), hexane-ethanoldiethylamine-acetic acid (60 + 40 + 0.2 + 0.2, v/v/v/v) as the mobile phase, and a flow rate of 1.0 mL/min. MT isomers are separated by using a mobile phase with the same components in the following proportions (40 + 60 + 0.2 + 0.2, v/v/v/v) and a flow rate of 0.8 mL/min. Ultraviolet detection was at 276 nm for both analytes. The coefficients of variation (CVs) and average recoveries (ARs) for the R-enantiomers in samples A, B, C, D, and E were 1.15 and 101.06%, 0.74 and 99.25%, 1.05 and 102.57%, 0.84 and 101.57%, and 0.86 and 98.62%, respectively. The CVs and ARs for the S-enantiomers in samples A, B, C, D, and E were 1.33 and 98.87%, 0.99 and 100.76%, 1.17 and 101.69%, 1.26 and 100.39%, and 1.40 and 99.39%, respectively. The standard curves of R-AT, S-AT, R-MT, and S-MT showed good linearity over the concentration range studied with correlation coefficients of 0.9991, 0.998, 0.9988, and 0.999, respectively.  相似文献   

19.
牛奶样品经磷酸溶液提取,提取液用苯磺酸阳离子交换柱和C18固相萃取柱净化,链霉素残留液用甲醇从C18固相萃取柱上洗脱,经旋转蒸发器减压蒸干,残渣用0.01mol/L庚烷磺酸钠溶液溶解,用柱后衍生-高效液相色谱荧光检测器在激发波长263nm和发射波长435nm测定.方法线性范围为0.01~0.10mg/kg;在0.01~0.10mg/kg范围,三个添加水平的回收率为78.3%~80.2%,变异系数(CV)为7.4%~12.4%,方法检出限为0.005mg/kg.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号