首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

2.
In a novel template synthesis of carbodiphosphoranes (CDPs), the phosphine functionalized CDP ligand C(dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) is formed in the coordination sphere of group 10 metals from CS(2) and 4 equivalents of dppm. The products are the PCP pincer complexes [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt) and 2 equivalents of dppmS. The compound C(dppm)(2), which is composed of a divalent carbon atom and two dppm subunits, represents a new PCP-type pincer ligand with the formally neutral carbon Lewis base of the CDP functionality as the central carbon. Treatment of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Pd, Pt) with hydrochloric acid results in protonation at the CDP carbon atom and the formation of the PCP pincer complexes [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt). The PCP pincer ligand [CH(dppm)(2)](+) involves a formally cationic central carbon donor. The reaction of [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl with HCl leads to the extrusion of NiCl(2) and formation of the diprotonated CDP compound [CH(2)(dppm)(2)]Cl(2), from which the monoprotonated conjugate base [CH(dppm)(2)]Cl is obtained upon addition of bases, such as NH(3). The crystal structures of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt), [Ni(Cl)(C(dppm)(2)-κ3P,C,P)](2)[NiCl(4)], [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt) as well as [CH(2)(dppm)(2)]Cl(2) and [CH(dppm)(2)]Cl are presented. A comparison of the solid state structures reveals interesting features, e.g. infinite supramolecular networks mediated by C-H···Cl hydrogen bond interactions and an unexpected loss of molecular symmetry upon protonation in the complexes [M(CH(dppm)(2)-κ3P,C,P)(Cl)]Cl(2) (M = Pd, Pt) as a result of the flexible ligand backbone. Additionally the new compounds were characterized comprehensively in solution by multinuclear (31)P, (13)C and (1)H NMR spectroscopy: Several spectroscopic parameters show a striking variability in particular regarding the carbodiphosphorane functionality. Furthermore the compound [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl was examined by cyclic voltammetry (CV) and could be shown to display quasi-reversible oxidative as well as reductive behaviour.  相似文献   

3.
Ethylenediamine (en) solutions of K4Pb9 react with toluene solutions of ML4 (M = Pt, Pd, L = PPh3; M = Ni, L2= COD) and 2,2,2-crypt to give M@Pb12(2-) cluster anions (M = Pt (1), Pd (2), Ni (3)) as the [K(2,2,2-crypt)]+ salts in low (Ni) to good (Pt) yields. The ions have near perfect Ih point symmetry and have been characterized by X-ray diffraction, 207Pb NMR and LDI-TOF mass spectrometry studies. For M = Ni, the primary product formed is the D4d Ni@Pb10(2-) cluster that has also been structurally characterized. The M@Pb10(2-) clusters (M = Pd, Pt) and the new Zintl ions closo-Pb10(2-) and closo-Pb12(2-) were formed in the gas phase but have not been detected in solution or the solid state. The structural trends of these series of clusters have been investigated through DFT calculations. The Ni@Pb10(2-) cluster is dynamic on the 207Pb NMR time scale at -45 degrees C and 104.7 MHz. The M@Pb12(2-) ions show unusually deshielded 207Pb NMR chemical shifts that presumably arise from sigma-aromatic effects associated with their high symmetries. In the solid state, the salts form superlattices of cations and anions (e.g. the AlB2 lattice of [K(2,2,2-crypt)](2)[Pt@Pb12]) and are prototypes for "assembled cluster materials".  相似文献   

4.
A comparison of the square-planar complexes of group 10 (Pd(II), Pt(II)) and 16 (Se(II), Te(II)) centers with the tetraisopropyldiselenoimidodiphosphinate anion, [N((i)Pr2PSe)2](-), is made on the basis of the results of a solid-state (31)P, (77)Se, (125)Te, and (195)Pt NMR investigation. Density functional theory calculations of the respective chemical shift and (14)N electric field gradient tensors in these compounds complement the experimental results. The NMR spectra were analyzed to determine the respective phosphorus, selenium, tellurium, and platinum chemical shift tensors along with numerous indirect spin-spin coupling constants. Special attention was given to observed differences in the NMR parameters for the transition metal and main-group square-planar complexes. Residual dipolar coupling between (14)N and (31)P, not observed in the solid-state (31)P NMR spectra of the Pd(II) and Pt(II) complexes, was observed at 4.7 and 7.0 T for M[N((i)Pr 2PSe)2]2(M = Se, Te) yielding average values of R((31)P, (14)N)eff = 890 Hz, CQ((14)N) = 2.5 MHz, (1) J( (31)P, (14)N) iso= 15 Hz, alpha = 90 degrees , beta = 17 degrees . The span, Omega, and calculated orientation of the selenium chemical shift tensor for the diselenoimidodiphosphinate anion is found to depend on whether the selenium is located within a pseudoboat or distorted-chair MSe 2P 2N six-membered ring. The largest reported values of (1)J((77)Se, (77)Se) iso, 405 and 435 Hz, and (1)J((125)Te, (77)Se)iso, 1120 and 1270 Hz, were obtained for the selenium and tellurium complexes, respectively; however, in contrast a correspondingly large value of (1)J((195)Pt, (77)Se)iso was not found. The chemical shift tensors for the central atoms, Se(II) and Te(II), possess positive skews, while for Pt(II) its chemical shift tensor has a negative kappa. This observed difference for the shielding of the central atoms has been explained using a qualitative molecular orbital approach.  相似文献   

5.
The reaction of 2 equiv of the air-stable primary phosphine (ferrocenylmethyl)phosphine (PH2CH2Fc, 1) with [Pd(cod)Cl2] (Fc = ferrocenyl; cod = 1,5-cyclooctadiene) at 298 K gave the phosphanido-bridged Pd(II) tetramer [Pd(PH2CH2Fc)Cl(mu-PHCH2Fc)]4 (2), which shows an unprecedented arrangement of four Pd atoms embedded in an eight-membered Pd4P4 ring. An X-ray diffraction study showed that 2 crystallizes in the triclinic space group P with a = 17.607(7) A, b = 17.944(7) A, c = 18.792(7) A, alpha = 107.120(12) degrees, beta = 96.344(13) degrees, gamma = 117.087(15) degrees . Each molecule contains four palladium atoms in a distorted square-planar coordination formed by one chlorine and three phosphorus atoms. Two of the latter belong to bridging primary phosphanides and the remaining one is contributed by a terminal PH2CH2Fc ligand. The coordination environments of neighboring metal centers adopt an almost perpendicular mutual orientation. The reaction of 2 equiv of 1 with [Pt(cod)Cl2] at 323 K yielded the analogous Pt(II) tetramer of formula [Pt(PH2CH2Fc)Cl(mu-PHCH2Fc)]4 (3), which was fully characterized by multinuclear and dynamic NMR, IR, and elemental analyses. Single-crystal X-ray diffraction on 3 confirmed the tetranuclear arrangement in the solid state, but orientational disorder of the molecule precludes a more detailed discussion of the structure. Low-temperature NMR experiments in CD2Cl2 showed the presence of two slowly interconnecting conformers. Reaction of 1 and [M(cod)Cl2] (M = Pd or Pt) at lower temperatures (273 K for Pd, 295 K for Pt) in dichloromethane allowed the detection in solution of the mononuclear species cis-[M(PH2CH2Fc)2Cl2] (M = Pd, 4; M = Pt, 5) which, upon heating, transformed into the tetramers 2 and 3, respectively. Solid samples of 4 and 5 could be isolated after workup at low temperature and were characterized by conventional spectroscopic methods.  相似文献   

6.
2,4-Diaryl- and 2,4-diferrocenyl-1,3-dithiadiphosphetane disulfide dimers (RP(S)S)(2) (R = Ph (1a), 4-C(6)H(4)OMe (1b), FeC(10)H(9) (Fc) (1c)) react with a variety of alcohols, silanols, and trialkylsilyl alcohols to form new dithiophosphonic acids in a facile manner. Their corresponding salts react with chlorogold(I) complexes in THF to produce dinuclear gold(I) dithiophosphonate complexes of the type [AuS(2)PR(OR')](2) in satisfactory yield. The asymmetrical nature of the ligands allows for the gold complexes to form two isomers (cis and trans) as verified by solution (1)H and (31)P[(1)H] NMR studies. The X-ray crystal structures of [AuS(2)PR(OR')](2) (R = Ph, R' = C(5)H(9) (2); R = 4-C(6)H(4)OMe, R' = (1S,5R,2S)-(-)-menthyl (3); R = Fc, R' = (CH(2))(2)O(CH(2))(2)OMe (4)) have been determined. In all cases only the trans isomer is obtained, consistent with solid state (31)P NMR data obtained for the bulk powder of 3. Crystallographic data for 2 (213 K): orthorhombic, Ibam, a = 12.434(5) A, b = 19.029(9) A, c = 11.760(4) A, V = 2782(2) A(3), Z = 4. Data for 3 (293 K): monoclinic, P2(1), a = 7.288(2) A, b = 12.676(3) A, c = 21.826(4) A, beta = 92.04(3) degrees, V = 2015.0(7) A(3), Z = 2. Data for 4 (213 K): monoclinic, P2(1)/n, a = 11.8564(7) A, b = 22.483(1) A, c = 27.840(2) A, beta = 91.121(1) degrees, V = 7419.8(8) A(3), Z = 8. Moreover, 1a-c react with [Au(2)(dppm)Cl(2)] to form new heterobridged trithiophosphonate complexes of the type [Au(2)(dppm)(S(2)P(S)R)] (R = Fc (12)). The luminescence properties of several structurally characterized complexes have been investigated. Each of the title compounds luminesces at 77 K. The results indicate that the nature of Au...Au interactions in the solid state has a profound influence on the optical properties of these complexes.  相似文献   

7.
Two novel heterometallic octahedral clusters [Rh(4)Pt(2)(CO)(11)(dppm)(2)](1) and [Ru(2)Rh(2)Pt(2)(CO)(12)(dppm)(2)](2) were synthesized by the reaction of [Rh(2)Pt(2)(CO)(6)(dppm)(2)] with [Rh(6)(CO)(14)(NCMe)(2)] and Ru(3)(CO)(12), respectively. Solid state structures of 1 and 2 have been established by a single crystal X-ray diffraction study. Two dppm ligands in 1 are bonded to one platinum and three rhodium atoms, which form an equatorial plane of the Rh(4)Pt(2) octahedron. Two rhodium and two platinum atoms bound to the diphosphine ligands in 2 are nonplanar to give an octahedral C2 symmetric Ru(2)Rh(2)Pt(2)(dppm)2 framework. The (31)P NMR investigation of and (1D, (31)P COSY, (31)P-[(103)Rh] HMQC) and simulation of 1D spectral patterns showed that in both clusters the structures of the M(6)(PP)(2) fragments found in the solid state are maintained in solution.  相似文献   

8.
Addition of formate on the dicationic cluster [Pd(3)(dppm)(3)(mu(3)-CO)](2+) (dppm=bis(diphenylphosphinomethane) affords quantitatively the hydride cluster [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+). This new palladium-hydride cluster has been characterised by (1)H NMR, (31)P NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry. The unambiguous identification of the capping hydride was made from (2)H NMR spectroscopy by using DCO(2) (-) as starting material. The mechanism of the hydride complex formation was investigated by UV/Vis stopped-flow methods. The kinetic data are consistent with a two-step process involving: 1) host-guest interactions between HCO(2) (-) and [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) a reductive elimination of CO(2). Two alternatives routes to the hydride complex were also examined : 1) hydride transfer from NaBH(4) to [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) electrochemical reduction of [Pd(3)(dppm)(3)(mu(3)-CO)](2+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) followed by an addition of one equivalent of H(+). Based on cyclic voltammetry, evidence for a dual mechanism (ECE and EEC; E=electrochemical (one-electron transfer), C=chemical (hydride dissociation)) for the two-electron reduction of [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) is provided, corroborated by digital simulation of the experimental results. Geometry optimisations of the [Pd(3)(H(2)PCH(2)PH(2))(3)(mu(3)-CO)(mu(3)-H)](n) model clusters were performed by using DFT at the B3 LYP level. Upon one-electron reductions, the Pd--Pd distance increases from a formal single bond (n=+1), to partially bonding (n=0), to weak metal-metal interactions (n=-1), while the Pd--H bond length remains relatively the same.  相似文献   

9.
Reactions of [MCl2(L-L)], M = Pt, Pd; L-L = bis(diphenylphosphino)methane (dppm) or bis(diphenylphosphino)ethane (dppe), with NaC5H4SN in a 1 : 2 molar ratio lead to mononuclear species [M(S-C5H4SN)2(P-P)], M = Pt; L-L = dppm (1) or dppe (2) and M = Pd; L-L = dppe (3), as well as to the dinuclear [Pd2(micro2-S,N-C5H4SN)(micro2-kappa2S-C5H4SN)(micro2-dppm)(S-C5H4SN)2] (4). In contrast, reaction of [MCl2(dppm)] with NaC5H4SN in a 1 : 1 molar ratio leads to [Pd2(micro2-S,N-C5H4SN)3(micro2-dppm)]Cl (5) and trans-[Pt(S-C5H4SN)2(PPh2Me)2] (6) respectively. The latter is formed in low yield by cleavage of the dppm ligand. The dinuclear derivatives 4 and 5 present an A-frame and lantern structure, respectively. The former showing three different co-ordination modes in the same molecule with a short Pd-Pd distance of 2.9583 (9) A and the latter with three bridging S,N thionate ligands showing a shorter Pd-Pd distance of 2.7291 (13) A. Both distances could be imposed by the bridging ligands or point to some sort of metal-metal interaction.  相似文献   

10.
The unsaturated cyclic [M3(dppm)3(CO)](2+) clusters (M = Pt, Pd; dppm = Ph2PCH2PPh2; such as PF6(-) salt) exhibit a cavity formed by the six dppm-phenyl groups placed like a picket fence above the unsaturated triangular M3 dicationic center. Electrostatic interactions of the M(3+) units inside this cavity with the carboxylate anion RCO2(-) [R = tetraphenylporphyrinatozinc(II), ZnTPP; p-phenyltritolylporphyrinatozinc(II), ZnTTPP; p-phenyltritolylporphyrinatopalladium(II), PdTTPP] form dyads for through-space triplet energy transfers. The binding constants are on the order of 20,000 M(-1) in all six cases (298 K). The energy diagram built upon absorption and emission spectra at 298 and 77 K places the [Pt3(dppm)3(CO)](2+) and [Pd3(dppm)3(CO)](2+) as triplet energy donors, respectively, with respect to the ZnTPPCO2(-), ZnTTPPCO2(-), and PdTTPPCO2(-) pigments, which act as acceptors. Evidence for energy transfer is provided by the transient absorption spectra at 298 K, where triplet-triplet absorption bands of the metalloporphyrin chromophores are depicted at all time (at 298 K) with total absence of the charge-separated state in the nanosecond to microsecond time scale. Rates for energy transfer (ranging in the 10(4) s(-1) time scale) are extracted from the emission lifetimes of the [Pt3(dppm)3(CO)](2+) donor in the free chromophore and the host-guest assemblies. The emission intensity of [Pd3(dppm)3(CO)](2+) is too weak to measure its spectrum and emission lifetime in the presence of the strongly luminescent metalloporphyrin-containing materials. For the [Pd3(dppm)3(CO)](2+)...metalloporphyrin dyads, evidence for fluorescence and phosphorescence lifetime quenching of the porphyrin chromophore at 298 K is provided. These quenchings, exhibiting rates of 10(4) (triplet) and 10(8) s(-1) (singlet), are attributed to a photoinduced electron transfer from the metalloporphyrin to the cluster due to the low reduction potential.  相似文献   

11.
The 1:1 reaction between the d(9)-d(9) Pd(2)(dmb)(2)Cl(2) complex (dmb = 1,8-diisocyano-p-menthane) and the diphosphine ligands (diphos) bis(diphenylphosphino)butane (5, dppb), bis(diphenylphosphino)pentane (6, dpppen), bis(diphenylphosphino)hexane (7, dpph), and bis(diphenylphosphino)acetylene (8, dpa) in the presence of LiClO(4) leads to the [[Pd(2)(dmb)(2)(diphos)](ClO(4))(2)](n) polymers. These new materials are characterized by NMR ((1)H, (13)C, (31)P), IR, Raman, and UV-vis spectroscopies (466 < lambda(max)(dsigma-dsigma*) < 480 nm), by ATG, XRD, and DSC methods, and by the capacity to make stand-alone films. From the measurements of the intrinsic viscosity in acetonitrile, the M(n) ranges from 16000 to 18400 (12 to 16 units). The dinuclear model complex [Pd(2)(dmb)(2)(PPh(3))(2)](ClO(4))(2) (4) is prepared and investigated as well. The molecular dynamic of the title polymers in acetonitrile solution is investigated by means of (13)C spin-lattice relaxation time (T(1)) and nuclear Overhauser enhancement methods (NOE). The number of units determined by T(1)/NOE methods is 3 to 4 times less than that found from the measurements of intrinsic viscosity, and is due to flexibility in the polymer backbone, even for bridging ligands containing only one (dmb) or two C-C single bonds (dpa). During the course of this study, the starting material Pd(2)(dmb)(2)Cl(2) was reinvestigated after evidence for oligomers in the MALDI-TOF spectrum was noticed. In solution, this d(9)-d(9) species is a binuclear complex (T(1)/NOE). This result suggests that the structure of the title polymers in solution and in the solid state may not be the same either. Finally, these polymers are strongly luminescent in PrCN glasses at 77 K, and the photophysical data (emission lifetimes, 1.50 < tau(e) < 2.75 ns; quantum yields, 0.026 < Phi(e) < 0.17) are presented. X-ray data for [Pd(2)(dppe)(2)(dmb)(2)](PF(6))(4): monoclinic, space group C2/c, a = 24.3735 A, b = 21.8576(13) A, c = 18.0034(9) A, b = 119.775(1) degrees, V = 8325.0(8) A(3), Z = 4.  相似文献   

12.
Reactions of pyrimidine‐2‐thione (HpymS) with PdII/PtIV salts in the presence of triphenyl phosphine and bis(diphenylphosphino)alkanes, Ph2P‐(CH2)m‐PPh2 (m = 1, 2) have yielded two types of complexes, viz. a) [M(η2‐N, S‐ pymS)(η1‐S‐ pymS)(PPh3)] (M = Pd, 1 ; Pt, 2 ), and (b) [M(η1‐S‐pymS)2(L‐L)] {L‐L, M = dppm (m = 1) Pd, 3 ; Pt, 4 ; dppe (m = 2), Pd, 5 ; Pt, 6 }. Complexes have been characterized by elemental analysis (C, H, N), NMR spectroscopy (1H, 13C, 31P), and single crystal X‐ray crystallography ( 1 , 2 , 4 , and 5 ). Complexes 1 and 2 have terminal η1‐S and chelating η2‐N, S‐modes of pymS, while other Pd/Pt complexes have only terminal η1‐S modes. The solution state 31P NMR spectral data reveal dynamic equilibrium for the complexes 3 , 5 and 6 , whereas the complexes 1 , 2 and 4 are static in solution state.  相似文献   

13.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

14.
Reactions of Pt(diimine)(tdt) (tdt =3,4-toluenedithiolate) with [M(2)(dppm)(2)(MeCN)(2)](2+) (M = Cu(I) or Ag(I), dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(tdt)(mu-SH)(dppm)(3)](ClO(4)) (1) and [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy) 2; 4,4'-dimethyl-2,2'-bipyridine (dmbpy) 3; phenanthroline (phen) 4, 5-bromophenanthroline (Brphen) 5) for M = Cu(I), but [PtAg(2)(tdt)(mu-SH)(dppm)(3)](SbF(6)) (6) and [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (diimine = bpy 7; dmbpy 8; phen 9; Brphen 10) for M = Ag(I). While the complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) result from linkage of Pt(diimine)(tdt) and [M(2)(dppm)(2)(MeCN)(2)](2+) by tdt sulfur donors, formation of [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5) is related to rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms by self-assembly. The formation of 1 and 6 is involved not only in dissociation and recombination of the metal components, but also in disruption of C-S bonds in the dithiolate (tdt). The dithiolate tdt adopts a chelating and bridging coordination mode in anti conformation for [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5), whereas there is the syn conformation for other complexes. Compounds 1 and 6 represent sparse examples of mu-SH-bridged heterotrinuclear Pt(II)M(I)(2) complexes, in which Pt(II)-M(I) centers are bridged by dppm and sulfur donors of tdt, whereas M(I)-M(I) (M = Cu for 1; Ag for 6) centers are linked by dppm and the mu-SH donor. The (31)P NMR spectra show typical platinum satellites (J(Pt-P) = 1450-1570 Hz) for 1-6 and Ag-P coupling for Pt(II)-Ag(I) (J(Ag-P) = 350-450 Hz) complexes 6-10. All of the complexes show intense emission in the solid state and in frozen glasses at 77 K. The complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) also afford emission in fluid acetonitrile solutions at room temperature. Solid-state emission lifetimes at room temperature are in the microsecond range. It is revealed that emission energies of the trinuclear heterometallic complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) exhibit a remarkable blue shift (0.10-0.35 eV) relative to those of the precursor compounds Pt(diimine)(tdt). The crystal structures of 1, 2, 4, 6, 8, and 9 were determined by X-ray crystallography.  相似文献   

15.
Five kinds of (1:1), (1:3), and (2:1) salts of 3-[4-(diethylmethylammonio)phenyl]-1,5-diphenyl-6-oxoverdazyl radical cation [V](+) with M(dmit)(2) anions (M = Ni, Zn, Pd, and Pt, dmit = 1,3-dithiol-2-thione-4,5-dithiolate) ([V](+)[Ni(dmit)(2)](-) (1), [V](+)[Ni(dmit)(2)](3)(-) (2), [V](+)(2)[Zn(dmit)(2)](2-) (3), [V](+)(2)[Pd(dmit)(2)](2-) (4), and [V](+)(2)[Pt(dmit)(2)](2-) (5)) and an iodide salt of [V](+) ([V](+)[I](-) (6)) have been prepared, and the magnetic susceptibilities (chi(M) values) have been measured between 1.8 and 300 K. The chi(M) of the (1:1) Ni salt (1) can be well reproduced by the sum of the contributions from (i) a Curie-Weiss system with a Curie constant (C) of 0.376 K emu/mol and a negative Weiss constant (theta) of -1.5 K and (ii) the one-dimensional Heisenberg antiferromagnetic alternating chain system with 2J(A-B)/k(B) = -274 K (alternation parameter alpha = J(A-C)/J(A-B) = 0.2). The chi(M) of the (1:3) Ni salt (2) can be well explained by the two-term contributions from (i) the Curie-Weiss system with C = 0.376 K emu/mol and theta = -5.0 K and (ii) the dimer system with 2J/k(B) = -258 K. The magnetic properties of 1 and 2 were discussed based on the results obtained by crystal structure analysis and ESR measurements of 1 and 2. The chi(M) values of the (2:1) Zn, Pd, Pt salts 3, 4, and 5 and [V](+)[I](-) salt 6 follow the Curie-Weiss law with C = 0.723, 0.713, 0.712, and 0.342 K emu/mol and theta = -2.8, -3.1, -2.6, and +0.02 K, respectively, indicating that only the spins of the verdazyl radical cation contribute to the magnetic property of these salts. The salts 1, 3, and 5 are insulators. On the other hand, the conductivity (sigma) of the Ni salt 2 and Pd salt 4 at 20 degrees C was sigma = 8.9 x 10(-2) and 1.3 x 10(-4) S cm(-)(1) with an activation energy E(A) = 0.11 and 0.40 eV, respectively. The salts 2 and 4 are new molecular magnetic semiconductors.  相似文献   

16.
Various products of the reaction of [E(ddp)] (ddp=2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}-2-pentene; E=Al, Ga) with Pt(0) and Pd(0) olefin complexes are reported. Thus, the reaction of [Pt(cod)(2)] (cod=1,5-cyclooctadiene) with two equivalents of [Ga(ddp)] yields [Pt(1,3-cod){Ga(ddp)}(2)] (1), whereas treatment of [Pd(2)(dvds)(3)] (dvds=1,1,3,3-tetramethyl1,3-divinyldisiloxane) with [E(ddp)] leads to the monomeric compounds [(dvds)Pd{E(ddp)}] (E=Ga (2 a), Al (2 b)) by substitution of the bridging dvds ligand. Both 1 and 2 a readily react with strong pi-acceptor ligands such as CO or tBuNC to give the dimeric compounds [M{mu(2)-Ga(ddp)}(L)] (L=CO, tBuNC; M=Pt (3 a, 5 a), Pd (3 b, 5 b)), respectively. Based on (1)H NMR spectroscopic data, [Pt{Ga(ddp)}(2)(CO)] is likely to be an intermediate in the formation of 3 a. Furthermore, reactions of 1 with H(2) and HSiEt(3) yield the monomeric compounds [Pt{Ga(ddp)}(2)(H)(2)] (7) and [Pt{Ga(ddp)}(2)(H)(SiEt(3))] (8). Finally, the reaction of [Pt(cod)(2)] with one equivalent of [Ga(ddp)] in the presence of H(2) in hexane gives the new dimeric cluster [Pt{mu(2)-Ga(ddp)}(H)(2)](2) (9).  相似文献   

17.
The heterodinuclear d(9)-d(9) title compound 1, whose crystal structure has been solved, reacts with dppm [bis(diphenylphosphino)methane] in the presence of NaBF4 to generate the salt [ClPd(mu-dppm)2Pt(eta(1)-dppm)][BF4] (2a), which contains a Pt-bound dangling dppm ligand. 2a has been characterized by 1H and 31P NMR, Fourier transform Raman [nu(Pd-Pt) = 138 cm(-1)], and UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 366 nm]. In a similar manner, [ClPd(mu-dppm)2Pt(eta(1)-dppm=O)][BF4] (2b), ligated with a dangling phosphine oxide, has been prepared by the addition of dppm=O. The molecular structure of 2b has been established by an X-ray diffraction study. 2a reacts with 1 equiv of NaBH4 to form the platinum hydride complex [(eta(1)-dppm)Pd(mu-dppm)2Pt(H)][BF4] (3). Both 2a and 3 react with an excess of NaBH4 to provide the mixed-metal d(10)-d(10) compound [Pd(mu-dppm)3Pt] (4). The photophysical properties of 4 were studied by UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 460 nm] and luminescence spectroscopy (lambda(emi) = 724 nm; tau(e) = 12 +/- 1 micros, 77 K). The protonation of 1 and 4 leads to [ClPd(mu-dppm)2(mu-H)PtCl]+ (5) and 3, respectively. Stoichiometric treatment of 1 with cyclohexyl or xylyl isocyanide yields [ClPd(mu-dppm)2Pt(CNC6H11)]Cl (6a) and [ClPd(mu-dppm)2Pt(CN-xylyl)]Cl (6b) ligated by terminal-bound CNR ligands. In contrast, treatment of 1 with the phosphonium salt [C[triple bond]NCH2PPh3]Cl affords the structurally characterized A-frame compound [ClPd(mu-dppm)2(mu-C=NCH2PPh3)PtCl]Cl (6c), spanned by a bridging isocyanide ligand. The electrochemical reduction of 2a at -1.2 V vs SCE, as well as the reduction of 5 in the presence of dppm, leads to a mixture of products 3 and 4. Further reduction of 3 at -1.7 V vs SCE generates 4 quantitatively. The reoxidation at 0 V of 4 in the presence of Cl- ions produces back complex 2a. The whole mechanism of the reduction of 1 has been established.  相似文献   

18.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

19.
Li Z  Loh ZH  Mok KF  Hor TS 《Inorganic chemistry》2000,39(23):5299-5305
Three heterometallic Au-Pt complexes [Pt2(PPh3)4(mu-S)(mu 3-S)Au(PPh3)][PF6] (2), [Pt2(PPh3)4(mu 3-S)2Au2(mu-dppm)]-[PF6]2 (3), and [Pt2(PPh3)4(mu 3-S)2Au2(mu-dppf)][PF6]2 (4) have been synthesized from Pt2(PPh3)4(mu-S)2 (1) [dppm = Ph2PCH2PPh2; dppf = (C5H4PPh2)2Fe] and characterized by single-crystal X-ray crystallography. In 2, the Au(I) atom is anchored on only one of the sulfur centers. In 3 and 4, both sulfur atoms are aurated, showing the ability of 1 to support an overhead bridge structure, viz. [Au2(P-P)], with or without the presence of Au-Au bond. The change of dppf to dppm facilitates such active interactions. Two stereoisomers of complex 3 (3a,b) have been obtained and characterized by single-crystal X-ray crystallography. NLDFT calculations on 2 show that the linear coordination mode is stabilized with respect to the trigonal planar mode by 14.0 kJ/mol. All complexes (2-4) are fluxional in solution with different mechanisms. In 2, the [Au(PPh3)] fragment switches rapidly between the two sulfur sites. Our hybrid MM-NLDFT calculations found a transition state in which the Au(I) bears an irregular trigonal planar geometry (delta G++ = 19.9 kJ/mol), as well as an intermediate in which Au(I) adopts a regular trigonal planar geometry. Complexes 3a,b are roughly diastereoisomeric and related by sigma (mirror plane) conversion. This symmetry operation can be broken down to two mutually dependent fluxional processes: (i) rapid flipping of the dppm methylene group across the molecular plane defined by the overhead bridge; (ii) rocking motion of the two Au atoms across the S...S axis of the (Pt2S2) core. Modeling of the former by molecular mechanics yields a steric barrier of 29.0 kJ/mol, close to that obtained from variable-temperature 31P(1Hz) NMR study (33.7 kJ/mol). In 4, the twisting of the ferrocenyl moiety across the S...S axis is in concert with a rocking motion of the two gold atoms. The movement of dppf is sterically most demanding, and hence, 4 is the only complex that shows a static structure at lower temperatures. Pertinent crystallographic data: (2) space group P1, a = 15.0340(5) A, b = 15.5009(5) A, c = 21.9604(7) A, alpha = 74.805(1) degrees, beta = 85.733(1) degrees, gamma = 78.553(1) degrees, R = 0.0500; (3a) space group Pna2(1), a = 32.0538(4) A, b = 16.0822(3) A, c = 18.9388(3) A, R = 0.0347; (3b) space group Pna2(1), a = 31.950(2) A, b = 16.0157(8) A, c = 18.8460(9) A, R = 0.0478; (4) space group P2(1)/c, a = 13.8668(2) A, b = 51.7754(4) A, c = 15.9660(2) A, beta = 113.786(1) degrees, R = 0.0649.  相似文献   

20.
Self-assembly between Pt(phen)(edt) (phen=phenanthroline, edt=1,2-ethanedithiolate) and [Cu(PPh3)2(MeCN)2](ClO4) (PPh3=triphenylphosphine) gave rise to formation of heterohexanuclear complex [Pt4Cu2(edt)4(PPh3)6](ClO4)2(4H2O) (1). The complex was characterized by elemental analyses, ES-MS, UV-Vis, IR, 31P NMR spectroscopy and X-ray crystallography. The molecule consists of two [Pt2Cu(edt)2(PPh3)3] units which has a centrosymmmetric inversion to give a cyclic heterohexanuclear skeleton. The Pt and Cu center adopt square-planar and trigonal coordination modes, respectively. The compound shows intense emission at 632 nm in the solid state and at 678 nm in frozen dichloromethane glass at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号