首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
There is an ongoing and tantalizing controversy regarding the mechanism of a key process in nature, C-H hydroxylation, by the enzyme cytochrome P450 (Auclaire, K.; Hu, Z.; Little, D. M.; Ortiz de Montellano, P. R.; Groves, J. T. J. Am. Chem. Soc. 2002, 124, 6020-6027. Newcomb, M.; Aebisher, D.; Shen, R.; Esala, R.; Chandrasena, P.; Hollenberg, P. F.; Coon, M. J. J. Am. Chem. Soc. 2003, 125, 6064-6065). To definitely resolve this controversy, theory must first address the actual systems that have been used by experiment, and that generated the controversy. This is done in the present paper, which constitutes the first extensive theoretical study of such two experimental systems, trans-2-phenylmethyl-cyclopropane (1) and trans-2-phenyl-iso-propylcyclopropane (4). The theoretical study of these substrates reveals that the only low energy pathway for C-H hydroxylation is the two-state rebound mechanism described originally for methane hydroxylation (Ogliaro, F.; Harris, N.; Cohen, S.; Filatov, M.; de Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2000, 122, 8977-8989). The paper shows that the scenario of a two-state rebound mechanism accommodates much of the experimental data. The computational results provide a good match to experimental results concerning the very different extents of rearrangement for 1 (20-30%) vs 4 (virtually none), lead to product isotope effect for the reaction of 1, in the direction of the experimental result, and predict as well the observed metabolic switching from methyl to phenyl hydroxylation, which occurs upon deuteration of the methyl group. Furthermore, the study reveals that an intimate ion pair species involving an alkyl carbocation derived from 4 gives no rearranged products, again in accord with experiment. This coherent match between theory and experiment cannot be merely accidental; it comes close to being aproof that the actual mechanism of C-H hydroxylation involves the two-state reactivity revealed by theory. Analysis of the rearrangement modes of the carbocations derived from 1 and 4 excludes the participation of free carbocations during the hydroxylation of these substrates. Finally, the mechanistic significance of product isotope effect (different isotope effects for the rearranged and unrearranged alcohol products) is analyzed. It is shown to be a sensitive probe of two-state reactivity; the size of the intrinsic product isotope effect and its direction reveal the structural differences of the hydrogen abstraction transition states in the low-spin vs high-spin reaction manifolds.  相似文献   

3.
Heme degradation by heme oxygenase (HO) enzymes is important in maintaining iron homeostasis and prevention of oxidative stress, etc. In response to mechanistic uncertainties, we performed quantum mechanical/molecular mechanical investigations of the heme hydroxylation by HO, in the native route and with the oxygen surrogate donor H2O2. It is demonstrated that H2O2 cannot be deprotonated to yield Fe(III)OOH, and hence the surrogate reaction starts from the FeHOOH complex. The calculations show that, when starting from either Fe(III)OOH or Fe(III)HOOH, the fully concerted mechanism involving O-O bond breakage and O-C(meso) bond formation is highly disfavored. The low-energy mechanism involves a nonsynchronous, effectively concerted pathway, in which the active species undergoes first O-O bond homolysis followed by a barrier-free (small with Fe(III)HOOH) hydroxyl radical attack on the meso position of the porphyrin. During the reaction of Fe(III)HOOH, formation of the Por+*FeIV=O species, compound I, competes with heme hydroxylation, thereby reducing the efficiency of the surrogate route. All these conclusions are in accord with experimental findings (Chu, G. C.; Katakura, K.; Zhang, X.; Yoshida, T.; Ikeda-Saito, M. J. Biol. Chem. 1999, 274, 21319). The study highlights the role of the water cluster in the distal pocket in creating "function" for the enzyme; this cluster affects the O-O cleavage and the O-Cmeso formation, but more so it is responsible for the orientation of the hydroxyl radical and for the observed alpha-meso regioselectivity of hydroxylation (Ortiz de Montellano, P. R. Acc. Chem. Res. 1998, 31, 543). Differences/similarities with P450 and HRP are discussed.  相似文献   

4.
High-valent metal-oxo complexes catalyze C-H bond activation by oxygen insertion, with an efficiency that depends on the identity of the transition metal and its oxidation state. Our study uses density functional calculations and theoretical analysis to derive fundamental factors of catalytic activity, by comparison of a ruthenium-oxo catalyst with its iron-oxo analogue toward methane hydroxylation. The study focuses on the ruthenium analogue of the active species of the enzyme cytochrome P450, which is known to be among the most potent catalysts for C-H activation. The computed reaction pathways reveal one high-spin (HS) and two low-spin (LS) mechanisms, all nascent from the low-lying states of the ruthenium-oxo catalyst (Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem. Int. Ed. 2001, 40, 2874-2878). These mechanisms involve a bond activation phase, in which the transition states (TS's) appear as hydrogen abstraction species, followed by a C-O bond making phase, through a rebound of the methyl radical on the metal-hydroxo complex. However, while the HS mechanism has a significant rebound barrier, and hence a long lifetime of the radical intermediate, by contrast, the LS ones are effectively concerted with small barriers to rebound, if at all. Unlike the iron catalyst, the hydroxylation reaction for the ruthenium analogue is expected to follow largely a single-state reactivity on the LS surface, due to a very large rebound barrier of the HS process and to the more efficient spin crossover expected for ruthenium. As such, ruthenium-oxo catalysts (Groves, J. T.; Shalyaev, K.; Lee, J. In The Porphyrin Handbook; Biochemistry and Binding: Activation of Small Molecules, Vol. 4; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; pp 17-40) are expected to lead to more stereoselective hydroxylations compared with the corresponding iron-oxo reactions. It is reasoned that the ruthenium-oxo catalyst should have larger turnover numbers compared with the iron-oxo analogue, due to lesser production of suicidal side products that destroy the catalyst (Ortiz de Montellano, P. R.; Beilan, H. S.; Kunze, K. L.; Mico, B. A. J. Biol. Chem. 1981, 256, 4395-4399). The computations reveal also that the ruthenium complex is more electrophilic than its iron analogue, having lower hydrogen abstraction barriers. These reactivity features of the ruthenium-oxo system are analyzed and shown to originate from a key fundamental factor, namely, the strong 4d(Ru)-2p(O,N) overlaps, which produce high-lying pi(Ru-O), sigma(Ru-O), and sigma(Ru-N) orbitals and thereby to lead to a preference of ruthenium for higher-valent oxidation states with higher electrophilicity, for the effectively concerted LS hydroxylation mechanism, and for less suicidal complexes. As such, the ruthenium-oxo species is predicted to be a more robust catalyst than its iron-oxo analogue.  相似文献   

5.
Recent experimental studies revealed that cytochrome P450 2E1 (CYP2E1) could metabolize not only ethanol but also its primary product, acetaldehyde, accompanying the well-known acetaldehyde dehydrogenases (ALDH) in the metabolism of acetaldehyde. Mechanistic aspects of acetaldehyde hydroxylation by Compound I model active species of CYP2E1 were investigated by means of B3LYP DFT calculations in the present paper. Our study results demonstrate that acetaldehyde hydroxylation by CYP2E1 is in accord with the effectively concerted mechanisms both on the high quartet spin state (HS) and on the low doublet spin state (LS). The rate-limiting step is H-abstraction, and the activation energy is about 11.7 approximately 14.0 kcal/mol on the quartet (doublet) reaction route, which is about one-half to one-third of that needed by methane hydroxylation. The phenomenon that the HS and LS reaction routes are both effectively concerted was shown for the first time to occur in trans-2-phenyl-iso-propylcyclopropane hydroxylation by Kumar et al. (see Figure 7 in the paper of Kumar, D.; de Visser, S. P.; Sharma, P. K.; Cohen, S.; Shaik, S. J. Am. Chem. Soc. 2004, 126, 1907) and was confirmed in our work of acetaldehyde hydroxylation by cytochrome P450. Theoretical exploration of the HS O-rebound barrier degradation is also presented in the present paper on the basis of Shaik's valence bond (VB) model.  相似文献   

6.
Iron(III)-hydroperoxo, [Por(CysS)Fe(III)-OOH](-), a key species in the catalytic cycle of cytochrome P450, was recently identified by EPR/ENDOR spectroscopies (Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.; Hoffman, B. M. J. Am. Chem. Soc. 2001, 123, 1403-1415). It constitutes the last station of the preparative steps of the enzyme before oxidation of an organic compound and is implicated as the second oxidant capable of olefin epoxidation (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555-3560), in addition to the penultimate active species, Compound I (Groves, J. T.; Han, Y.-Z. In Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed.; Ortiz de Montellano, P. R., Ed.; Plenum Press: New York, 1995; pp 3-48). In response, we present a density functional study of a model species and its ethylene epoxidation pathways. The study characterizes a variety of properties of iron(III)-hydroperoxo, such as the O-O bonding, the Fe-S bonding, Fe-O and Fe-S stretching frequencies, its electron attachment, and ionization energies. Wherever possible these properties are compared with those of Compound I. The proton affinities for protonation on the proximal and distal oxygen atoms of iron(III)-hydroperoxo, and the effect of the thiolate ligand thereof, are determined. In accordance with previous results (Harris, D. L.; Loew, G. H. J. Am. Chem. Soc. 1998, 120, 8941-8948), iron(III)-hydroperoxo is a strong base (as compared with water), and its distal protonation leads to a barrier-free formation of Compound I. The origins of this barrier-free process are discussed using a valence bond approach. It is shown that the presence of the thiolate is essential for this process, in line with the "push effect" deduced by experimentalists (Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841-2887). Finally, four epoxidation pathways of iron(III)-hydroxperoxo are located, in which the species transfers oxygen to ethylene either from the proximal or from the distal sites, in both concerted and stepwise manners. The barriers for the four mechanisms are 37-53 kcal/mol, in comparison with 14 kcal/mol for epoxidation by Compound I. It is therefore concluded that iron(III)-hydroperoxo, as such, cannot be a second oxidant, in line with its significant basicity and poor electron-accepting capability. Possible versions of a second oxidant are discussed.  相似文献   

7.
DFT and QM/MM computations of allylic C-H hydroxylation versus C=C epoxidation in cyclohexene and propene by Compound I of P450cam demonstrate that the relative barriers for the oxidative processes themselves are not good predictors of the observed selectivity. However, a kinetic expression previously developed (Kozuch, S.; Shaik, S. J. Am. Chem. Soc. 2006, 128, 3355) for catalytic cycles under steady-state conditions, predicts, in accord with experiment, that propene will undergo exclusive C=C epoxidation, while cyclohexene will undergo both reactions with a small preference for epoxidation. The model expression for the effective barrier of the cycle forms a general basis for understanding and predicting the selectivity of P450 isozymes.  相似文献   

8.
Density functional theory calculations are presented on the catalytic properties of a horseradish peroxidase mutant whereby the axial nitrogen atom is replaced by phosphorus. This mutant has never been studied experimentally and only one theoretical report on this system is known (de Visser, S. P. J. Phys. Chem. B 2006, 110, 20759-20761). Thus, a one-atom substitution in horseradish peroxidase changes the properties of the catalytic center of the enzyme to more cytochrome P450-type qualities. In particular, the phosphorus-substituted horseradish peroxidase mutant reacts with substrates via a unique reactivity pattern, whereby alkanes are regioselectively hydroxylated even in the presence of a double bond. Reaction barriers of propene epoxidation and hydroxylation are almost identical to ones observed for a cytochrome P450 catalyst and significantly higher than those obtained for a horseradish peroxidase catalyst. It is shown that the regioselectivity difference is entropy and thermally driven and that the electron-transfer processes that occur during the reaction mechanism follow cytochrome P450-type patterns in the hydroxylation reaction.  相似文献   

9.
Density functional theory is used to explore the mechanisms of alkane hydroxylation for four synthetic non-heme iron(IV)-oxo complexes with three target substrates (Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde; J.-U.; Song, W. J.; Stubna, A.; Kim, J.; Münck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc. 2004, 126, 472-473; Rohde, J.-U.; Que, L., Jr. Angew. Chem. Int. Ed. 2005, 44, 2255-2258.). The iron-oxo reagents possess triplet ground states and low-lying quintet excited states. The set of experimental and theoretical reactivity trends can be understood if the reactions proceed on the two spin states, namely two-state reactivity (TSR); an appropriate new model is presented. The TSR model makes testable predictions: (a) If crossing to the quintet state occurs, the hydroxylation will be effectively concerted; however, if the process transpires only on the triplet surface, stepwise hydroxylation will occur, and side products derived from radical intermediates would be observed (e.g., loss of stereochemistry). (b) In cases of crossing en route to the quintet transition state, one expects kinetic isotope effects (KIEs) typical of tunneling. (c) In situations where the two surfaces contribute to the rate, one expects intermediate KIEs and radical scrambling patterns that reflect the two processes. (d) Solvent effects on these reactions are expected to be very large.  相似文献   

10.
The mechanism of N-demethylation of N,N-dimethylanilines (DMAs) by cytochrome P450, a highly debated topic in mechanistic bioinorganic chemistry (Karki, S. B.; Dinnocenczo, J. P.; Jones, J. P.; Korzekwa, K. R. J. Am. Chem. Soc. 1995, 117, 3657), is studied here using DFT calculations of the reactions of the active species of the enzyme, Compound I (Cpd I), with four para-(H, Cl, CN, NO2) substituted DMAs. The calculations resolve mechanistic controversies, offer a consistent mechanistic view, and reveal the following features: (a) the reaction pathways involve C-H hydroxylation by Cpd I followed by a nonenzymatic carbinolamine decomposition. (b) C-H hydroxylation is initiated by a hydrogen atom transfer (HAT) step that possesses a "polar" character. As such, the HAT energy barriers correlate with the energy level of the HOMO of the DMAs. (c) The series exhibits a switch from spin-selective reactivity for DMA and p-Cl-DMA to two-state reactivity, with low- and high-spin states, for p-CN-DMA and p-NO2-DMA. (d) The computed kinetic isotope effect profiles (KIEPs) for these scenarios match the experimentally determined KIEPs. Theory further shows that the KIEs and TS structures vary in a manner predicted by the Melander-Westheimer postulate: as the substituent becomes more electron withdrawing, the TS is shifted to a later position along the H-transfer coordinate and the corresponding KIEs increases. (e) The generated carbinolaniline can readily dissociate from the heme and decomposes in a nonenzymatic environment, which involves water assisted proton shift.  相似文献   

11.
Ab initio calculations at the MP2/cc-pVTZ level show that the cyclobutylmethyl cation is a nonclassical sigma-delocalized species, which is distinct from the global minimum C2-symmetric cyclopentyl cation (Schleyer, P. v. R.; Carneiro, J. W. de M.; Koch, W.; Raghavachari, K. J. Am. Chem. Soc. 1989, 111, 5475). Relatively lower level DFT calculations, on the other hand, show that the primary cyclobutylmethyl cation spontaneously collapses into the cyclopentyl cation (Prakash, G. K. S.; Reddy, V. P.; Rasul, G.; Casanova, J.; Olah, G. A. J. Am. Chem. Soc. 1998, 120, 13362). The secondary 1-cyclobutylethyl cation is also a nonclassical carbocation, as shown by calculations at the MP2/cc-pVTZ level. Two structures having energy minima are identified for the latter cation on the potential energy surface. The conformer in which the methyl group is in the exo orientation is a global minimum and is favored over the corresponding endo conformer by 1.2 kcal/mol at the MP2/cc-pVTZ//MP2/cc-pVTZ +ZPE level of calculations. The tertiary 1-cyclobutyl-1-methylethyl cation, at this level of calculations, also involves substantial nonclassical sigma-delocalization, showing that the nonclassical stabilization is more important for cyclobutylmethyl cations relative to the cyclopropylmethyl cations. The 13C NMR chemical shifts obtained from GIAO-CCSD(T)/tzp/dz calculations further substantiate the nonclassical structures for these carbocations.  相似文献   

12.
We report in this study that an oxoiron(IV) porphyrin complex bearing electron-deficient porphyrin ligand, (TPFPP)FeIV=O (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion), shows reactivities similar to those found in oxoiron(IV) porphyrin pi-cation radicals. In the epoxidation of olefins by the (TPFPP)FeIV=O complex, epoxides were yielded as major products; cyclohexene oxide was the sole product formed in the epoxidation of cyclohexene, and stilbenes were stereospecifically oxidized to the corresponding epoxide products. More striking results were obtained in alkane hydroxylation reactions; the hydroxylation of adamantane afforded a high degree of selectivity for tertiary C-H bonds over secondary C-H bonds, and the hydroxylation of cis-1,2-dimethylcyclohexane yielded a tertiary alcohol product with >99% retention of stereochemistry. The latter result demonstrates that an oxoiron(IV) porphyrin complex hydroxylates alkanes with a high stereospecificity. Isotope labeling studies performed with H218O and 18O2 in the olefin epoxidation and alkane hydroxylation reactions demonstrated that oxygen atoms in oxygenated products derived from the oxoiron(IV) porphyrin complex.  相似文献   

13.
In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-a?-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed.  相似文献   

14.
15.
C-H hydroxylation is a fundamental process. In Nature it is catalyzed by the enzyme cytochrome P450, in a still-debated mechanism that poses a major intellectual challenge for both experiment and theory; currently, the opinions keep swaying between the original single-state rebound mechanism, a two-oxidant mechanism (where ferric peroxide participates as a second oxidant, in addition to the primary active species, the high-valent iron-oxo species), and two-state reactivity (TSR) mechanism (where two spin states are involved). Recent product isotope effect (PIE) measurements for the trans-2-phenyl-methyl cyclopropane probe (1), led Newcomb and co-workers (Newcomb, M.; Aebisher, D.; Shen, R.; Esala, R.; Chandrasena, P.; Hollenberg, P.; Coon, M. J. J. Am. Chem. Soc. 2003, 125, 6064-6065) to rule out TSR in favor of the two-oxidant scenario, since the direction of the PIE was at odds with the one predicted from calculations on methane hydroxylation. The present report describes a density functional theoretical study of C-H hydroxylation of the Newcomb probe, 1, leading to rearranged (3) and unrearranged (2) products. Our study shows that the reaction occurs via TSR in which the high-spin pathway gives dominant rearranged products, whereas the low-spin pathway favors unrearranged products. The calculated PIE(2/3) values based on TSR are found to be in excellent agreement with the experimental data of Newcomb and co-workers. This match between experiment and theory makes a strong case that the reaction occurs via TSR mechanism.  相似文献   

16.
The title reaction has been investigated in a diaphragmless shock tube by laser schlieren densitometry over the temperature range 1163-1629 K and pressures of 60, 120, and 240 Torr. Methyl radicals were produced by dissociation of 2,3-butanedione in the presence of an excess of dimethyl ether. Rate coefficients for CH(3) + CH(3)OCH(3) were obtained from simulations of the experimental data yielding the following expression which is valid over the range 1100-1700 K: k = (10.19 ± 3.0)T(3.78)?exp((-4878/T)) cm(3) mol(-1)s(-1). The experimental results are in good agreement with estimates by Curran and co-workers [Fischer, S. L.; Dryer, F. L.; Curran, H. J. Int. J. Chem. Kinet.2000, 32 (12), 713-740. Curran, H. J.; Fischer, S. L.; Dryer, F. L. Int. J. Chem. Kinet.2000, 32 (12), 741-759] but about a factor of 2.6 lower than those of Zhao et al. [Zhao, Z.; Chaos, M.; Kazakov, A.; Dryer, F. L. Int. J. Chem. Kinet.2008, 40 (1), 1-18].  相似文献   

17.
Density functional calculations were performed on the sulfoxidation reaction by a model compound I (Cpd I) of cytochrome P450. By contrast to previous alkane hydroxylation studies, which exhibit a dominant low-spin (LS) pathway, the sulfoxidation follows a dominant high-spin (HS) reaction. Thus, competing hydroxylation and sulfoxidation processes as observed for instance by Jones et al. (Volz, T. J.; Rock, D. A.; Jones, J. P. J. Am. Chem. Soc. 2002, 124, 9724) are the result of a two-state reactivity scenario, whereby the hydroxylation originates from the LS pathway and the sulfoxidation from the HS pathway. In this manner, two spin states of a single oxidant (Cpd I) can be disguised as two different oxidants. The calculations rule out the possibility that a second oxidant (the ferric peroxide, Cpd 0 species) interferes in the observed results of Jones et al.  相似文献   

18.
The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)−1.min−1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.  相似文献   

19.
Recent studies revealed that norcarane (bicyclo[4.1.0]heptane) is oxidized to 2-norcarene (bicyclo[4.1.0]-hept-2-ene) and 3-norcarene (bicyclo[4.1.0]hept-3-ene) by iron-containing enzymes and that secondary oxidation products from the norcarenes complicate mechanistic probe studies employing norcarane as the substrate (Newcomb, M.; Chandrasena, R. E. P.; Lansakara-P., D. S. P.; Kim, H.-Y.; Lippard, S. J.; Beauvais, L. G.; Murray, L. J.; Izzo, V.; Hollenberg, P. F.; Coon, M. J. J. Org. Chem. 2007, 72, 1121-1127). In the present work, the product profiles from the oxidations of 2-norcarene and 3-norcarene by several enzymes were determined. Most of the products were identified by GC and GC-mass spectral comparison to authentic samples produced independently; in some cases, stereochemical assignments were made or confirmed by 2D NMR analysis of the products. The enzymes studied in this work were four cytochrome P450 enzymes, CYP2B1, CYPDelta2E1, CYPDelta2E1 T303A, and CYPDelta2B4, and three diiron-containing enzymes, soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath), toluene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, and phenol hydroxylase (PH) from Pseudomonas stutzeri OX1. The oxidation products from the norcarenes identified in this work are 2-norcaranone, 3-norcaranone, syn- and anti-2-norcarene oxide, syn- and anti-3-norcarene oxide, syn- and anti-4-hydroxy-2-norcarene, syn- and anti-2-hydroxy-3-norcarene, 2-oxo-3-norcarene, 4-oxo-2-norcarene, and cyclohepta-3,5-dienol. Two additional, unidentified oxidation products were observed in low yields in the oxidations. In matched oxidations, 3-norcarene was a better substrate than 2-norcarene in terms of turnover by factors of 1.5-15 for the enzymes studied here. The oxidation products found in enzyme-catalyzed oxidations of the norcarenes are useful for understanding the complex product mixtures obtained in norcarane oxidations.  相似文献   

20.
The paper outlines the fundamental factors that govern the mechanisms of alkane hydroxylation by cytochrome P450 and the corresponding barrier heights during the hydrogen abstraction and radical rebound steps of the process. This is done by a combination of density functional theory calculations for 11 alkanes and valence bond (VB) modeling of the results. The energy profiles and transition states for the various steps are reconstructed using VB diagrams (Shaik, S. S. J. Am. Chem. Soc. 1981, 103, 3692-3701. Shaik, S.; Shurki, A. Angew. Chem. Int. Ed. 1999, 38, 586-625.) and the DFT barriers are reproduced by the VB model from raw data based on C-H bond energies. The model explains a variety of other features of P450 hydroxylations: (a) the nature of the polar effect during hydrogen abstraction, (b) the difference between the activation mechanisms leading to the Fe(IV) vs the Fe(III) electromers, (c) the difference between the gas phase and the enzymatic reaction, and (d) the dependence of the rebound barrier on the spin state. The VB mechanism shows that the active species of the enzyme performs a complex reaction that involves multiple bond making and breakage mechanisms by utilizing an intermediate VB structure that cuts through the high barrier of the principal transformation between reactants and products, thereby mediating the process at a low energy cost. The correlations derived in this paper create order and organize the data for a process of a complex and important enzyme. This treatment can be generalized to the reactivity patterns of nonheme systems and synthetic iron-oxo porphyrin reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号