首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of clonidine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 230 to 44 for clonidine and m/z 254 to 44 for the internal standard. The assay exhibited a linear dynamic range of 10-2000 pg/mL for clonidine in human plasma. The lower limit of quantification was 10 pg/mL with a relative standard deviation of less than 6.8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of amlodipine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase C(18) column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 409/238 for amlodipine and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 50-10,000 pg/mL for amlodipine in human plasma. The lower limit of quantification was 50 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of amlodipine and the IS from spiked plasma samples were 74.7 +/- 4.6 and 72.1 +/- 2.0%, respectively. A run time of 1.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies. The observed maximum plasma concentration (Cmax) of amlodipine (2.5 mg oral dose) was 1425 pg/mL, time to observed maximum plasma concentration (Tmax) was 8.1 h and elimination half-life (T(1/2)) was 50.1 h.  相似文献   

3.
A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of pramipexole in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 212/152 for pramipexole and m/z 409/228 for the IS. The method exhibited a linear dynamic range of 200-8000 pg/mL for pramipexole in human plasma. The lower limit of quantification was 200 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 3.5 min for each sample made it possible to analyze more than 200 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

4.
A simple, sensitive and rapid high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the assay of granisetron in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 313/138 for granisetron and m/z 409/228 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for granisetron in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 5%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

5.
A sensitive high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (MS/MS) method was developed and validated for the simultaneous quantification of trandolapril and its metabolite trandolaprilat in human plasma using ramipril as an internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M-H]- ions, m/z 429/168 for trandolapril, m/z 401/168 for trandolaprilat and m/z 415/166 for the internal standard. The method exhibited a linear dynamic range of 20-10,000 pg/mL for both trandolapril and trandolaprilat in human plasma. The lower limit of quantification was 20 pg/mL for both trandolapril and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

6.
A simple, sensitive and rapid high-performance liquid chromatography/positive electrospray ionization tandem mass spectrometry method was developed and validated for the assay of clopidogrel in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H](+) ions, m/z 322/212 for clopidogrel and m/z 264/154 for the internal standard. The assay exhibited a linear dynamic range of 5-6000 pg/mL for clopidogrel in human plasma. The lower limit of quantification was 5 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

7.
A sensitive and selective high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of amisulpride in 100 microL of human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M + H)(+) ions, m/z 370-242 for amisulpride and m/z 341-112 for the internal standard. The assay exhibited a linear dynamic range with a lower range of 0.1-100 ng/mL and a higher range of 1-500 ng/mL of amisulpride in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for both linearity ranges. A run time of 2.0 min for each sample made it possible to analyze more than 275 human plasma samples per day. The validated method has been successfully used to analyze plasma samples for application in pharmacokinetic studies.  相似文献   

8.
A simple, sensitive, selective and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of atorvastatin and its active metabolites ortho-hydroxyatorvastatin and para-hydroxyatorvastatin in human plasma using rosuvastatin as internal standard (IS). Following simple liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 559/440 for atorvastatin, m/z 575/466 for ortho-hydroxyatorvastatin, m/z 575/440 for para-hydroxyatorvastatin and m/z 482/258 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for atorvastatin and its two metabolites in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of atorvastatin, ortho-hydroxyatorvastatin, para-hydroxyatorvastatin and the IS from spiked plasma samples were 54.2 +/- 3.2, 50.1 +/- 3.8, 65.2 +/- 3.6 and 71.7 +/- 2.7%, respectively. A run time of 2.5 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

9.
A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of rimonabant in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M+H)+ ions, m/z 463-363 for rimonabant and m/z 408-235 for the internal standard. The assay exhibited a linear dynamic range of 0.1-100 ng/mL for rimonabant in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. With dilution integrity up to 10-fold, the upper limit of quantification was extendable up to 1000 ng/mL. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

10.
A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of quetiapine in rat plasma. Following liquid-liquid extraction, the analyte was separated using a gradient mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 384 to m/z 221 for quetiapine and m/z 327 to m/z 270 for the internal standard. The assay exhibited a linear dynamic range of 0.25-500 ng/mL for quetiapine in rat plasma. The lower limit of quantification was 0.25 ng/mL with a relative standard deviation of less than 7%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated method was successfully used to analyze rat plasma samples for application in pre-clinical pharmacokinetic studies. This method in rodent plasma could be adapted for quetiapine assay in human plasma.  相似文献   

11.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of sitagliptin, a DPP-4 inhibitor, in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 408-235 for sitagliptin and m/z 310-148 for the internal standard. The assay exhibited a linear dynamic range of 0.1-250 ng/mL for sitagliptin in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

12.
A rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of fexofenadine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 1-500 ng/mL for fexofenadine in human plasma. The lower limit of quantification was 1 ng/mL with a relative standard deviation of less than 5% for fexofenadine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

13.
A sensitive and specific method using liquid chromatography–electrospray tandem mass spectrometry (LC‐MS/MS) for the determination of pinaverium bromide in human plasma was developed and validated. Pinaverium bromide and an internal standard (paclitaxel) were isolated from plasma samples by precipitating plasma, and determined by LC‐MS/MS in multiple‐reaction monitoring mode. The main metabolite of pinaverium bromide and endogenous substances in plasma did not show any interference. The calibration curve was linear over the plasma concentration range of 10.0–10000.0 pg/mL with a correlation coefficient of 0.9979. The relative standard derivations intra‐ and inter‐day at 30.0, 300.0 and 8000.0 pg/mL in plasma were less than 15%. The absolute recoveries of pinaverium bromide and the internal standard were 99.7–111.7 and 106.2%, respectively. The lower limit of quantitation was 10 pg/mL. The analytical method was successfully applied to study the pharmacokinetics of pinaverium bromide tablets in healthy Chinese volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of pseudoephedrine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple-reaction monitoring mode using the respective [M + H](+) ions, m/z 166/148 for pseuoephedrine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 2-1000 ng/mL pseudoephedrine in human plasma. The lower limit of quantification was 2 ng/mL with a relative standard deviation of less than 9% for pseudoephedrine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

15.
A simple, sensitive and rapid liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the quantification of valproic acid, an antiepileptic drug, in human plasma using benzoic acid as internal standard (IS). Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the single ion monitoring mode using the respective [M-H]- ions, m/z 143 for valproic acid and m/z 121 for the IS. The assay exhibited a linear dynamic range of 0.5-60 microg/mL for valproic acid in human plasma. The lower limit of quantification was 500 ng/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of valproic acid and the IS from spiked plasma samples were 96.1+/-4.2 and 95.6+/-2.7%, respectively. A run time of 4.5 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability and bioequivalence studies.  相似文献   

16.
A simple, sensitive and rapid high-performance liquid chromatography/negative ion electrospray tandem mass spectrometry method was developed and validated for the assay of fluvastatin in human plasma. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M-H]- ions, m/z 410/348 for fluvastatin and m/z 480/418 for the internal standard. The assay exhibited a linear dynamic range of 2-500 ng/mL for fluvastatin in human plasma. The lower limit of quantification was 2 ng/mL with a relative standard deviation of less than 5%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 1.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

17.
A rapid and sensitive LC/MS/MS assay was developed and validated for the determination of clopidogrel in human plasma. Clopidogrel was extracted by single liquid-liquid extraction with pentane, and chromatographic separations were achieved on a C(18) column. The method was validated to demonstrate the specificity, linearity, recovery, lower limit of quantification (LLOQ), stability, accuracy and precision. The multiple reaction monitoring was based on m/z transition of 322.2 --> 211.9 for clopidogrel and 264.1 --> 125.1 for ticlopidine (internal standard). The total analytical run time was relatively short (3 min), and the LLOQ was 10 pg/mL using 0.5 mL of human plasma. The assay was linear over a concentration range from 10 to 10,000 pg/mL (r > 0.999). The intra- and inter-day accuracies were 101.3-108.8 and 98.4-103.5%, respectively, and the intra- and inter-day assay precisions were 1.9-5.5 and 4.4-8.1%, respectively. The developed assay method was applied to a pharmacokinetic study in human volunteers after oral administration of clopidogrel at a dose of 150 mg.  相似文献   

18.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of tamsulosin (I), a highly selective alpha1-adrenoceptor antagonist used for the treatment of patients with symptomatic benign prostatic hyperplasia. The analyte and internal standard, mosapride (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reverse phase Waters symmetry C18 column with a mobile phase of 0.03% formic acid-acetonitrile (30:70, v/v). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 409.1 solidus in circle 228.1 and m/z 422.3 solidus in circle 198.3 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.1-50.0 ng/mL for tamsulosin in human plasma. The lower limit of quantitation was 100 pg/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.0 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

19.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of hydrochlorothiazide (I), a common diuretic and anti-hypertensive agent. The analyte and internal standard, tamsulosin (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase column (Waters symmetry C18) with a mobile phase of 10 mm ammonium acetate-methanol (15:85, v/v). The protonated analyte was quantitated in negative ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 296.1 solidus in circle 205.0 and m/z 407.2 solidus in circle 184.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-200 ng/mL for hydrochlorothiazide in human plasma. The lower limit of quantitation was 500 pg/mL, with a relative standard deviation of less than 9%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

20.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of mosapride (I), a novel and potent gastroprokinetic agent that enhances the upper gastrointestinal motility by stimulating 5-HT(4) receptor. The analyte and internal standard, tamsulosin (II), were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reversed-phase Waters symmetry C(18) column with a mobile phase of 0.03% formic acid-acetonitrile (10:90, v/v). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 422.3 -->198.3 and m/z 409.1 -->228.1 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.5-100.0 ng/mL for mosapride in human plasma. The lower limit of quantitation was 500 pg/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.0 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号