首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
刺激响应型微胶囊由于具有独有的高稳定性、多功能性、膜结构的可调性、以及对不同芯材的运送能力,在药物封装和释放、人造细胞、催化、化学传感器等领域具有广阔的应用前景.本文综述了近年来不同刺激响应型复合微胶囊的可控释放的研究进展,包括温敏型、pH响应型、磁响应型、生物响应型、电响应型,以及光响应型微胶囊,根据释放机理的不同着重对光响应型微胶囊的释放过程进行了总结,并对微胶囊可控释放在未来的发展趋势进行了展望.  相似文献   

2.
李建平  石鑫 《化学学报》2011,69(20):2439-2444
以pH-敏感介孔膦酸锆作为药物载体, 选用治疗时辰节律性疾病(风湿性关节炎)的药物双氯芬酸钠作为药物模型, 利用蘸涂的方法对载药的pH-敏感介孔膦酸锆进行时滞膜的包覆, 建立起一个时滞型和pH-敏感型相结合的口服结肠靶向给药系统. 在系统研究pH-敏感介孔膦酸锆对双氯芬酸钠吸附和释放的基础之上, 通过调控时滞膜的厚度控制释放双氯芬酸钠的时滞时间约为6 h. 该给药系统在人工模拟胃液中3 h内完全不释放双氯芬酸钠, 而在人工模拟肠液中最初的3 h(可以看成发生在小肠)所释放的双氯芬酸钠仅为全部释放量的9%, 在之后的46 h内(可以看成发生在结肠)缓慢释放的双氯芬酸钠则占全部释放量的90%以上. 这样, pH-敏感介孔膦酸锆作为新型药物载体与时滞效应相结合, 通过时滞和pH-敏感双重控制实现了治疗时辰节律性疾病药物在结肠的定位释放.  相似文献   

3.
用负离子络合型催化剂——Al/Zn双金属氧桥烷氧化物,[(RO)_2OAlO]_2Zn,研究了ε-己内酯与D,L-丙交酯的嵌段共聚合,合成了预定结构的单分散的(?/?1.12)AB型嵌段共聚物,通过控制两种链段的比例能有效控制药物释放和生物降解的速度,可望成为新型生物降解性控制药物释放的载体及其它生物医用材料。  相似文献   

4.
对合成的系列聚酰胺-胺型(PAMAM)树枝状高分子进行端基的羟基化和氯乙酰化两步修饰,使PAMAM最外层接上烷基氯.以修饰产物为引发剂,通过原子转移自由基引发甲基丙烯酸N,N-二甲氨基乙酯(DMAEMA)聚合得到树枝状PAMAM高分子衍生物,并对其结构用FTIR、1H-NMR和粒径分析进行了表征.紫外可见分光光度仪测定证实此高分子具有温度及pH敏感性.通过对小分子药物控制释放研究表明,此树枝状高分子衍生物通过环境pH值可有效地控制小分子药物的释放.  相似文献   

5.
控制药物释放体系及其机理   总被引:8,自引:0,他引:8  
药物控制释放是目前药物学发展的一个重要领域,用于药物控制释放的载体一般是高分子材料。本文主要介绍药物控制释放的种类、机理、高分子材料及其应用。  相似文献   

6.
刺激响应性聚合物纳米胶束是目前药物控制释放体系的研究热点之一,其原理是将疏水性药物以物理或化学方法包覆在具有核/壳结构的纳米微球中,通过环境刺激响应控制药物的包覆与释放,可增加疏水性药物溶解度、提高药物利用率、降低药物毒副作用,具有显著的研究价值和应用前景.本文中我们主要介绍了不同类型刺激响应性聚合物纳米胶束在药物控制释放体系的研究进展.  相似文献   

7.
张留伟  钱明  王静云 《化学学报》2017,75(8):770-782
释药可控的药物递送系统能够在特定刺激条件下,在时间和空间上精确实现在病灶处释放包载的药物分子,具有药物利用率高、毒副作用低等诸多优点,为各种重大疾病,如肿瘤的精准治疗提供了新思路.在众多的可控释药递送系统中,利用特定光照控制药物释放的光控释药型药物递送系统展现出广阔的应用潜力,受到研究者的广泛关注.近年来,基于不同光响应机理的光控释药型药物递送系统被设计开发用于药物的精确可控释放,本文介绍了四种光敏感基团的不同光响应机理,对基于不同光响应机理的光控释药型药物递送系统的研究进展进行了综述,指出现有光控释药型药物递送系统存在的问题及对未来的研究方向进行了展望.  相似文献   

8.
由于聚乳酸具有良好生物相容性与降解性,故可用作控释给药系统的载体材料.有关聚乳酸及其共聚物微球药物载体、释放行为及微球表面引入基团使之功能化的方法研究已有报道.以其它生物大分子材料作为囊壁材料的缓释微胶囊也有报道,但以聚乳酸制备中空微囊型的药物释放载体却鲜有研究.通过控制分子量、微囊大小、囊壁厚度等参数,  相似文献   

9.
药物控释体系可改善药物分子在机体内的释放、吸收、代谢和排泄过程,显著提高药物利用率并减弱药物的毒副作用。智能响应型水凝胶凭借其刺激响应性、亲水性和无毒性在药物控释方面得到了广泛的关注。本文介绍了智能响应型水凝胶药物控释体系的概念、机理和应用,详细归纳了智能响应型水凝胶药物控释体系的研究进展。按照刺激源不同将智能响应型水凝胶药物控释体系分为pH响应型、温度响应型、光响应型、生物分子(如葡萄糖、酶)响应型、外场(如电场、磁场)响应型、压力响应型、氧化还原响应型及多重响应型水凝胶药物控释体系。进一步介绍了智能响应型水凝胶药物控释体系在治疗癌症、急性肾损伤、眼病、糖尿病等疾病及抗菌、防止伤口感染等方面的应用。最后,基于目前智能响应型水凝胶药物控释体系存在的一些问题(如生物相容性差、存在突释或滞释现象、不可降解等)对其发展做出了展望。  相似文献   

10.
针对抗肿瘤小分子药物靶向性差、疗效低和毒副性大等缺陷,我们以Y型分子筛(YMS)为基体、阿霉素(DOX)为药物模型,通过pH调控,借助氢键和范德华力等物理作用力制备得到高负载Y型分子筛纳米药物体系(YMS?DOX)。采用UV?Vis、FT?IR、粒径和电位测试及荧光光谱证实YMS?DOX成功制备,且DOX的负载率可高达99.61%。体外药物释放测试发现YMS?DOX具有pH响应释放特性,在肿瘤环境中(pH=4.5)的药物释放量为正常生理环境(pH=7.4)中的3.8倍,表明其具有良好的药物输送特性。此外,利用流式细胞术和MTT测试法探究了YMS?DOX对乳腺癌细胞(MM?231)和树突细胞(DC)的细胞凋亡和毒性,结果表明YMS?DOX可以诱导肿瘤细胞凋亡,且可降低对正常细胞的毒副作用。  相似文献   

11.
The controlled release of drugs by biostimuli is highly desirable under physiological conditions for their potential use in advanced applications. The enzyme-inspired controlled release of cucurbituril nanovalves by using magnetic mesoporous silica nanoparticles (MSNs) in near-neutral aqueous solutions is reported for the first time. The encirclement of cucurbit[7]uril (CB[7]) onto the protonated 1,4-butanediamine stalks tethered to the external surfaces of superparamagnetic Fe(3) O(4) -embedded mesoporous silica particles leads to tight blocking of the nanopores. The supramolecular nanovalves are activated by the enzymatic decarboxylation products of lysine, cadaverine (in the protonated form), which has a high affinity for CB[7], so that the encapsulated guest molecules, calcein, in the nanopores are released into the bulk solution. The release of calcein can be controlled in small portions on command by alternating changes in enzymatic decarboxylation products and CB[7]. The amino acid derived polyamines have long been associated with cell growth and cancers. The guest molecules released from the delivery system of magnetic MSNs can act not only on sensing probes for levels of decarboxylases and polyamines, but also on efficacious drugs to specific tissues and cells for regulation of polyamine synthesis.  相似文献   

12.
A new hybrid material based on sulforhodamine B dye‐loaded silica mesoporous nanoparticles capped with a self‐immolative gate has been synthesized and characterized. The gated material's controlled release behavior is monitored under different pH conditions. Under acidic and neutral conditions, a low level of dye release is detected. However, at slightly basic pH, significant dye release occurs owing to deprotonation of the phenol moiety in the capping molecule, which results in its disassembly.  相似文献   

13.
The aim of this study was to design new soy protein-based bi-layered co-injection moulded matrix systems aimed to achieve controlled drug delivery. The devices consisted of a drug-free outer layer (skin) and a drug-containing core. The systems overcame the inherent disadvantage of non-linear release associated with diffusion-controlled single-layer matrix devices by providing additional releasing area with time to compensate for the decreasing release rate. As expected, the bi-layer devices presented a significant decrease in drug release rate when compared with a correspondent single layer matrix system. The skin thickness and the degree of crosslinking of the core appeared to be very important tools to tailor the release patterns. Furthermore, due to the amphoteric nature of the soy protein, the developed devices evidenced a pH-dependent behaviour. The mechanisms of drug release were also elucidated at two different pH values: i) pH 5.0, near the isoelectric point of soy (low matrix solubility); and ii) pH 7.4, physiological pH (high matrix solubility). Consequently, changing the release medium from pH 5.0 to pH 7.4 after two hours, led to an abrupt increase in drug release and the devices presented a typical controlled drug delivery profile: slow release/fast release. These evidences may provide for the development of individual systems with different release onsets that in combination may exhibit drug releases at predetermined times in a pre-programmed way. Another possibility is the production of three-layer devices presenting bimodal release profiles (fast release/slow release/fast release) by similar technologies. Scanning electron micrograph of a developed bi-layer device.  相似文献   

14.
Molecular interlocked systems with mechanically trapped components can serve as versatile building blocks for dynamic nanostructures. Here we report the synthesis of unprecedented double‐stranded (ds) DNA [2]‐ and [3]rotaxanes with two distinct stations for the hybridization of the macrocycles on the axle. In the [3]rotaxane, the release and migration of the “shuttle ring” mobilizes a second macrocycle in a highly controlled fashion. Different oligodeoxynucleotides (ODNs) employed as inputs induce structural changes in the system that can be detected as diverse logically gated output signals. We also designed nonsymmetrical [2]rotaxanes which allow unambiguous localization of the position of the macrocycle by use of atomic force microscopy (AFM). Either light irradiation or the use of fuel ODNs can drive the threaded macrocycle to the desired station in these shuttle systems. The DNA nanostructures introduced here constitute promising prototypes for logically gated cargo delivery and release shuttles.  相似文献   

15.
A real tonic : In a conceptually new approach to controlled release, the natural daily insulin profile in response to three meals is mimicked (see graph) with release of an insulin conjugate from a matrix, triggered by quinine, a component of tonic water.

  相似文献   


16.
聚氨酯生物吸收材料及其作为缓释药物载体的研究   总被引:6,自引:1,他引:6  
合成了一系列新的紫外光固化生物吸收性聚氨酯水凝胶网络,测定了材料的含水率及水解性能,并以之为载体,研究了对异烟肼的药物缓释性能。结果表明,该水凝胶的含水率及降解速率与其结构有关,该水凝胶对异烟肼具有缓释作用,释放行为受扩散控制并符合Higuchi方程,表观扩散系数与水凝胶的含水率有关。  相似文献   

17.
Electrospinning procedures such as blend electrospinning, coaxial electrospinning, and emulsion electrospinning have been used for the fabrication of electrospun nanofibers (ENFs) for biomedical applications. These ENFs are attracted great interest especially in drug delivery applications due to their small size, high surface area-to-volume, and porosity. The aim of this review is to focus on the controlled release mechanism among the different electrospinning methods, and the selectivity of hydrophilic, water-soluble polymers as a carrier for drug. The mechanism for the drug delivery depends mainly on the method of drug loading, polymeric interactions, and the nature of polymer swelling, erosion, or degradation. This review compressed on the literature survey about the fabrication of nanofibers by different electrospinning methods, factors affecting the nanofiber morphologies, selectivity of polymeric blends for successful controlled release behavior, and the mechanism involved in the drug release steps.  相似文献   

18.
Glutaraldehyde cross‐linked chitosan microspheres for controlled release of isoniazid were prepared using chitosan of different molecular weights (MWs) and degrees of deacetylation (DDAs). Chitosan microspheres were characterized for their size, hydrophobocity, degree of swelling and loading of isoniazid. Hydrophobicity of chitosan microspheres increased on increasing the degree of cross‐linking and MW of chitosan. Chitosan microspheres with high degree of deacetylation (DDA) (75 wt%), high MW chitosan (2227 kg mol?1), and with 12 wt% concentration of glutaraldehyde showed optimum loading and release of isoniazid. The isoniazid from chitosan microspheres was released in two steps, i.e. burst (%RB) and controlled (%RC) steps. The microspheres with low MW chitosan (260 kg mol?1) and low DDA (48 wt%) showed prominent burst release of isoniazid, but microspheres with high MW chitosan (2227 kg mol?1) and high DDA (75 wt%) have released more isoniazid in a controlled manner (60 wt%) at 37°C in a solution of pH 5.0 ± 0.1. The burst step of drug release (%RB) has followed first order kinetics, whereas controlled step of drug release (%RC) followed zero order kinetics. The burst step of drug release was Fickian and controlled step was non‐Fickian in nature. The diffusion constant (D) for isoniazid release was influenced by the properties of chitosan and degree of cross‐linking. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Drug release mechanism from silicone carrier differs depending on physicochemical properties of the drug. So far, there have been few reports on controlled release of insoluble drug and on simultaneous release of two kinds of water-soluble drugs. The purposes of this study are to establish methods for (1). continuous release of insoluble drug, and (2). release of two kinds of water-soluble drugs from silicone carrier. Polystyrene beads (PSTB) and proteins such as interferon (IFN) and human serum albumin (HSA) were used as model drugs. PSTB was released from silicone only when citric acid (CA) and sodium bicarbonate (SB) existed as additives. The release patterns of IFN and HSA were almost same in the case of matrix and covered-rod formulations, but double-layered formulation released them in different patterns. As far as we are aware, this is the first report on the release of insoluble drug from silicone and the controlled release of two kinds of water-soluble drugs.  相似文献   

20.
Controlled pesticide release from biodegradable polymers   总被引:2,自引:0,他引:2  
Polymers have been widely used in agriculture for applications including controlled release of pesticides and other active ingredients. The ability to predict their delivery helps avoid environmental hazards. Macromolecular matrices used as carriers in controlled release of agricultural active agents, especially pesticides, are reviewed. The review focuses on the advantages and mechanisms of controlled release. It includes biodegradable polymers in agriculture, their manufacturing methods, and their degradation mechanisms and kinetics. The article also presents a critical account of recent release studies and considers upcoming challenges.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号