首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substituted bicyclic pyrroles are produced directly from the coupling reaction of 2,5-disubstituted pyrroles with terminal alkynes, involving the activation of multiple C-H bonds and regioselective cyclisation.  相似文献   

2.
Conditions are reported for the facile, high-yielding coupling of acyl chlorides with terminal alkynes in a reaction involving palladium and copper iodide; the reaction is tolerant of a wide variety of acyl chlorides and terminal alkynes and provides a convenient one-pot route to acetylenic ketones.  相似文献   

3.
In the organoborane chemistry, the homologation reaction is one of the useful methods for the synthesis of organoboranes not available via hydroboration.1) The allylic boranes are known to be highly reactive and exhibit specific behaviors,2) but with few exceptions,3) these are difficult to be prepared directly by the hydroboration reaction.5) Previously, we reported that in the reaction of the dianion of phenoxyacetic acid with organoborane, the phenoxy group acts as a good leaving group.6) This result suggested us a new homologation reaction converting a saturated organoborane to a allylic borane (1) by the treatment with the carbanion of allyl phenyl ether. Here we wish to report the synthesis of 1-alkenes (II) three-carbon-homologated from starting alkenes7) and the regioselective synthesis of 1,5-dienes (III) using allylic borane intermediates (1) (eq. 1).  相似文献   

4.
A cobalt-catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R'CH?CH(2) , in the presence of zinc and water to give functionalized trans-disubstituted alkenes, RCH?CHCH(2) CH(2) R', is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl(2) /P(OMe)(3) /Zn catalyst system to afford 1,2-trans-disubstituted alkenes with high regio- and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl(2) /P(OPh)(3) /Zn system providing a mixture of 1,2-trans- and 1,1-disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3-enynes and acetylene gas with alkenes. Furthermore, a phosphine-free cobalt-catalyzed reductive coupling of terminal alkynes with enones, affording 1,2-trans-disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air-stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

5.
Representative organoborane mixtures were quantitatively converted to their borohydrides through their reaction with activated KH (KH), permitting their detailed analysis by (11)B NMR. Through the treatment of commercial KH with a THF solution of lithium aluminum hydride (LAH), a dramatic change in the surface morphology results as revealed by scanning electron microscopy (SEM). Energy dispersed spectroscopy (EDS) was employed to reveal that the LAH treatment deposits a significant amount of an unknown aluminum-containing species on the surface of the KH, which imparts a unique reactivity to the KH. Even highly hindered organoboranes are quantitatively converted to their borohydrides by replacing electronegative groups (e.g., OR, halogen) with hydrogen, retaining only the carbon ligation. Through this simple KH treatment, complex organoborane reaction mixtures are converted to the corresponding borohydrides whose (11)B NMR spectra normally exhibit resolved signals for the individual species present. The integration of these signals provides quantitative information on the relative amounts of each component of the mixture. New generalities for the effect of alpha-, beta-, and gamma-substituents have also been determined that provide a new, simple technique for the determination of the isomeric distribution in organoborane mixtures resulting from common organoborane processes (e.g., hydroboration). Moreover, the (1)H-coupled (11)B NMR spectra of these mixtures reveal the extent of alkylation for each species present. Representative organoboranes were examined by this new technique permitting a simple and convenient quantitative analysis of the regio- and diastereomeric composition of a variety of asymmetric organoborane processes. Previously unknown details of pinene-based hydroborations and reductions are revealed for the first time employing the KH (11)B NMR technique.  相似文献   

6.
A cobalt‐catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R′CH?CH2, in the presence of zinc and water to give functionalized trans‐disubstituted alkenes, RCH?CHCH2CH2R′, is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl2/P(OMe)3/Zn catalyst system to afford 1,2‐trans‐disubstituted alkenes with high regio‐ and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl2/P(OPh)3/Zn system providing a mixture of 1,2‐trans‐ and 1,1‐disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3‐enynes and acetylene gas with alkenes. Furthermore, a phosphine‐free cobalt‐catalyzed reductive coupling of terminal alkynes with enones, affording 1,2‐trans‐disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air‐stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

7.
Four-component coupling process involving two acetylenes, a nitrile, and a divalent titanium alkoxide reagent, Ti(O-i-Pr)(4)/2i-PrMgCl, directly yielded titanated pyridines in a highly selective manner. The reaction can be classified into four categories: (i) a combination of an internal acetylene, a terminal acetylene, sulfonylnitrile, and the titanium reagent to yield alpha-titanated pyridines, (ii) a combination of an internal acetylene, a (sulfonylamino)acetylene, a nitrile, and the titanium reagent to yield alternative alpha-titanated pyridines, (iii) a combination of an internal acetylene, a (sulfonylamino)acetylene, a nitrile, and the titanium reagent to yield titanated aminopyridines, and (iv) a combination of an acetylenic amide, a terminal acetylene, a nitrile, and the titanium reagent to yield pyridineamides with their side chain titanated. Some of these reactions enabled virtually completely regioselective coupling of two different, unsymmetrical acetylenes and a nitrile to form a single pyridine. Synthetic applications of these reactions have been illustrated in the preparation of optically active pyridines and medicinally useful compounds.  相似文献   

8.
We report the first one-pot process for the asymmetric addition of allyl, methallyl, and propargyl groups to aldehydes and ketones using B-chlorodiisopinocampheylborane ((d)DIP-Cl) and indium metal. Under Barbier-type conditions, indium metal was used to generate allyl- and allenylindium intermediates, and subsequent reaction with (d)DIP-Cl successfully promoted the transfer of these groups to boron forming the corresponding chiral borane reagents. The newly formed borane reagents were reacted with aldehydes and ketones to produce the corresponding alcohol products in high yields and up to excellent enantioselectivity (98% ee). This method produced excellent enantioenriched secondary homoallylic alcohols from the allylation and methallylation of benzaldehyde. Using this method, the methallylation and cinnamylation of ketones afforded the highest enantioselectivities, while the propargylation of both aldehydes and ketones provided low enantiomeric excesses. In addition, this procedure provided the first synthesis of B-allenyldiisopinocampheylborane, which was characterized by (1)H and (11)B NMR spectroscopy. This is the first example of the direct synthesis of allylboranes that contained substitutions from the corresponding allyl bromide and indium, thereby expanding the utility of the DIP-Cl reagent. Hence, a general and straightforward route to these chiral organoborane reagents in one-pot has been developed along with the asymmetric Barbier-type allylation and propargylation of aldehyde and ketone substrates using these chiral organoborane reagents in subsequent coupling reactions.  相似文献   

9.
A combination of an in situ generated chiral CuI/DTBM‐MeO‐BIPHEP catalyst system and EtOK enabled the enantioselective SN2′‐type allylic cross‐coupling between alkylborane reagents and γ,γ‐disubstituted primary allyl chlorides with enantiocontrol at a useful level. The reaction generates a stereogenic quaternary carbon center having three sp3‐alkyl groups and a vinyl group. This protocol allowed the use of terminal alkenes as nucleophile precursors, thus representing a formal reductive allylic cross‐coupling of terminal alkenes. A reaction pathway involving addition/elimination of a neutral alkylcopper(I) species with the allyl chloride substrate is proposed.  相似文献   

10.
The reaction of organolithium reagents with methyl-dialkylborinates in hydrocarbon solvents proceeds readily with precipitation of lithium methoxide and the formation of the corresponding mixed organoborane:
Consequently, simple filtration of the reaction mixture gives the mixed organoborane in high yield and purity. Other dialkylborane derivatives, such as the chloride and the hydride, are less desirable as substrates, frequently resulting in isomerization of the new alkyl groups.  相似文献   

11.
The well‐established A3 coupling reaction of terminal alkynes, aldehydes, and amines provides the most straightforward approach to propargylic amines. However, the related reaction of ketones, especially aromatic ketones, is still a significant challenge. A highly efficient catalytic protocol has been developed for the coupling of aromatic ketones with amines and terminal alkynes, in which CuI, generated in situ from the reduction of CuBr2 with sodium ascorbate, has been identified as the highly efficient catalyst. Since propargylic amines are versatile synthetic intermediates and important units in pharmaceutical products, such an advance will greatly stimulate research interest involving the previously unavailable propargylic amines.  相似文献   

12.
An interesting approach to functionalized imidazolidines is described. These compounds are obtained in a copper(I)-catalyzed domino three-component coupling and cyclization reaction involving two formaldehyde-derived imine units and a terminal alkyne. Alternatively, imidazolidines can be obtained from propargylamines and formaldehyde-derived imines. This strategy provides a straightforward and atom-economic pathway to construct imidazolidines with high yields and benefits from readily available starting materials, convenient one-pot operations.  相似文献   

13.
The Garner aldehyde-derived methylene alkene 5 and the corresponding benzyloxycarbonyl compound 25 undergo hydroboration with 9-BBN-H followed by palladium-catalyzed Suzuki coupling reactions with aryl and vinyl halides. After one-pot hydrolysis-oxidation, a range of known and novel nonproteinogenic amino acids were isolated as their N-protected derivatives. These novel organoborane homoalanine anion equivalents are generated and transformed under mild conditions and with wide functional group tolerance: electron-rich and -poor aromatic iodides and bromides (and a vinyl bromide) all undergo efficient Suzuki coupling. The extension of this methodology to prepare meso-DAP, R,R-DAP, and R,R-DAS is also described.  相似文献   

14.
To incorporate an acceptor type polythiophene segment onto a supramolecular block copolymer for potential light harvesting applications, effective synthetic routes for the end‐functionalized and acceptor‐substituted polythiophenes are critical. The Ullmann coupling reaction can be utilized to obtain electron‐deficient polythiophenes and to attach terminal thiophene units that carry functional groups. In this article, the reactions involving a 2,5‐dibromothiophene monomer containing an electron‐withdrawing fluorinated ester and 5‐bromo‐2‐thiophenecarboxaldehyde (the end‐capper) were studied in detail. It was found that the Ullmann coupling reaction of the dibromide is very fast (completed in a few minutes) and the terminal bromine group does not survive long under the reaction condition. These findings lead to the development of an effective procedure for aldehyde end‐capping of electron‐deficient polythiophenes. Polymers with molecular weights around 4000 Da are routinely obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 41–47, 2007  相似文献   

15.
The mechanism and selectivity of terminal alkyne coupling reactions promoted by rhodium(I) complexes of NHC‐based CNC pincer ligands have been investigated. Synthetic and kinetic experiments support E‐ and gem‐enyne formation through a common reaction sequence involving hydrometallation and rate‐determining C?C bond reductive elimination. The latter is significantly affected by the ligand topology: Employment of a macrocyclic variant enforced exclusive head‐to‐head coupling, contrasting the high selectivity for head‐to‐tail coupling observed for the corresponding acyclic pincer ligand.  相似文献   

16.
Proton-exchanged montmorillonite showed catalytic activity for intermolecular allylsilylation, arylsilylation, and terminal silylation of alkynes with allylsilanes. The reaction selectivity greatly depended on the solvent used. Reactions proceeded with various terminal alkynes and allylsilanes in good to moderate yields. The reaction pathways involving cationic Si species on the montmorillonite surface were also investigated.  相似文献   

17.
Direct functionalization and tandem processes have both received considerable recent interest due to their cost and time efficiency. Herein we report the synthesis of difficult to obtain 2-substituted pyrazolo[1,5-a]pyridines through a tandem palladium-catalyzed/silver-mediated elimination/direct functionalization/cyclization reaction involving N-benzoyliminopyridinium ylides. As such, these biologically important molecules are prepared in an efficient, high-yielding manner, only requiring a two-step sequence from pyridine. Aryl-substituted alkenyl bromides and iodides are effective ylide coupling partners. Mechanistic studies led to the use of terminal alkynes, which extended the scope of the reaction to include alkyl substitution on the unsaturated reactive site. The optimization, scope, and mechanistic considerations of the process are discussed.  相似文献   

18.
Trialkyl and aryl organoboranes catalyze the polymerization of dimethylsulfoxonium methylide (1). The product of the polymerization is a tris-polymethylene organoborane. Oxidation affords linear telechelic alpha-hydroxy polymethylene. The polymer molecular weight was found to be directly proportional to the stoichiometric ratio of ylide/borane, and polydispersities as low as 1.01-1.03 have been realized. Although oligomeric polymethylene has been the most frequent synthetic target of this method, polymeric star organoboranes with molecular weights of 1.5 million have been produced. The average turnover frequency at 120 degrees C in 1,2,4,5-tetrachlorobenzene/toluene is estimated at >6 x 10(6) g of polymethylene (mol boron)(-1) h(-1). The mechanism of the polyhomologation reaction involves initial formation of a zwitterionic organoborane.ylide complex which breaks down in a rate-limiting 1,2-alkyl group migration with concomitant expulsion of a molecule of DMSO. The reaction was found to be first order in the borane catalyst and zero order in ylide. DMSO does not interfere with the reaction. The temperature dependence of the reaction rate yielded the following activation energy parameters (toluene, DeltaH(++) = 23.2 kcal/mol, DeltaS(++) = 12.6 cal deg/mol, DeltaG(++) = 19.5 kcal/mol; THF, DeltaH(++) = 26.5 kcal/mol, DeltaS(++) = 21.5 cal deg/mol, DeltaG(++) = 20.1 kcal/mol).  相似文献   

19.
A new method for the synthesis of 3-substituted-1-ferrocenyl-2-propyn-1-ones was developed involving carbonylative Sonogashira coupling of iodoferrocene with terminal acetylenes. New ferrocenyl 1,3,5-trisubstituted pyrazoles and 2,4,6-trisubstituted pyrimidines were obtained by the addition-cyclocondensation reaction of the alkynones with hydrazines and guanidinium salts, respectively. The products were obtained with moderate to excellent yields and were characterised with various spectroscopic methods (1H NMR, 13C NMR IR, MS).  相似文献   

20.
Simple silver(I) slats were found to be highly efficient and selective catalyst for carboxylative coupling of aryl- or alkyl-substituted terminal alkynes, CO2, and various allylic, propargylic or benzylic chlorides to exclusively yield functionalized 2-alkynoates. The activity is about 300 times that of the previously reported N-heterocyclic carbene copper(I) catalytic system. The ligand-free silver(I) catalytic system showed the wide generality of substrates involving both functionalized terminal alkynes and chloride compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号