首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Q(4) and R(4) branch features of the (0,0)D (5)Delta(4)-X (5)Delta(4) band system and the Q(3) and R(3) branch features of the (0,0)D (5)Delta(3)-X (5)Delta(3) band system of iron monoxide FeO have been studied by optical Stark spectroscopy. The Stark splittings in the high resolution laser induced fluorescence spectra were analyzed to produce values for the magnitude of the permanent electric dipole moments /mu/ of 4.50+/-0.03, 4.29+/-0.05, 2.53+/-0.04, and 2.58+/-0.06 D for the X (5)Delta(4) (nu=0), X (5)Delta(3) (nu=0), D (5)Delta(4) (nu=0), and D (5)Delta(3) (nu=0) states, respectively. The results are compared to several ab initio predictions and to FeC. The qualitative trends are explained in terms of a molecular orbital correlation picture.  相似文献   

2.
3.
Permanent electric dipole moments and magnetic g factors for uranium monoxide (UO) have been determined from analyses of optical Stark and Zeeman spectra recorded at a spectral resolution that approaches the natural linewidth limit. Numerous branch features in the previously characterized [L. A. Kaledin et al., J. Mol. Spectrosc. 164, 27 (1994)] (0,0) [18403]5-X(1)4 and (0,0) [18404]5-X(1)4 electronic transitions were recorded in the presence of tunable static electric (Stark effect) or magnetic (Zeeman effect) fields. The lines exhibited unusually large Zeeman tuning effects. A ligand field model and an ab initio electronic structure calculation [R. Tyagi, Ph.D. thesis, The Ohio State University (2005)] were used to interpret the ground state properties. The results indicate that the low energy electronic states of UO are sufficiently ionic for the meaningful application of ligand field theory models. The dipole moments and g factors were distinctly different for the three electronic states examined, which implies that these properties may be used to deduce the underlying electronic state configurations.  相似文献   

4.
Ruthenium monofluoride, RuF, has been detected using low-resolution laser-induced fluorescence (LIF) in the visible and near infrared spectral regions. A visible band, designated as [18.2]5.5-X 4Phi(9/2), has been recorded field-free and in the presence of a static electric field using high-resolution LIF spectroscopy. The r0 internuclear distances for the [18.2]5.5 and X 4Phi(9/2) states were determined to be 1.911 and 1.916 A, respectively. The vibrational interval DeltaG(1/2) of 534(15) cm-1 for the X 4Phi(9/2) state was determined from the analysis of the dispersed LIF. The Stark shifts of the visible band were analyzed to produce permanent electric dipole moments of 1.97(8) and 5.34(7) D for the [18.2]5.5 and X 4Phi(9/2), states, respectively. The fluorine magnetic hyperfine structure associated with spectral features was analyzed. The hyperfine structure and dipole moments are interpreted using a molecular-orbital correlation model and compared with FeF and other ruthenium-containing molecules.  相似文献   

5.
New Gibbs ensemble simulation data for a polar fluid modeled by a square-well potential plus dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions are presented. This simulation data is used in order to assess the applicability of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Ri?o, Physica A 202, 420 (1994)] to systems where more than one term in the multipole expansion is relevant. It is found that this theory is able to reproduce qualitatively well the vapor-liquid phase diagram for different multipolar moment strengths, corresponding to typical values of real molecules, except in the critical region. Hence, this theory is used to model the behavior of substances with multiple chemical bonds such as carbon monoxide and nitrous oxide and we found that with a suitable choice of the values of the intermolecular parameters, the vapor-liquid equilibrium of these species is adequately estimated.  相似文献   

6.
The sub-Doppler laser induced fluorescence spectra of numerous branch features in the B 2Sigma+ -X 2Sigma+(0,0) band of calcium monodeuteride were recorded field-free and in the presence of a static electric field of up to 7 kV/cm. The field-free spectra were analyzed to produce an improved set of fine structure parameters for the B 2Sigma+(v=0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments of 2.57(3) and 2.51(3) D for B 2Sigma+(v=0) and X 2Sigma+(v=0) states, respectively. The permanent electric dipole moment for the X 2Sigma+(v=0) state of CaH is estimated to be 2.53(3) D.  相似文献   

7.
The intermediate Hamiltonian coupled cluster method is applied to calculate the nuclear quadrupole moments (NQM) of Pb and La. Large, converged basis sets are used to get the electric field gradients at the relevant nuclei; these make possible the extraction of the NQM from the measured hyperfine coupling constant B. The only Pb NQM listed in Pyykk???s 2008 table (Mol Phys 106:1965, 2008) is for the neutron-rich unstable 209 isotope (halflife 3.25 h), given as ?269(165) mb. This error bound of 60%, the largest in the table, comes from the poor precision of the measured B. More precise B values are now available for the neutron-poor isotopes with atomic weights 191, 193, 195, 197 and their NQMs are calculated herein. The best values obtained for these four isotopes are, respectively, 78(11), 179(9), 281(12), and 347(15) mb. The electric field gradient at the nucleus is the same for all Pb isotopes, so that NQMs of other isotopes may be evaluated when better B values become available for them. The same method is applied to 139La, for which an accurate B value in the b 1 D 2 state has recently become available. The calculated NQM is 206(4) mb, in excellent agreement with the recent molecular value of 200(6) mb.  相似文献   

8.
9.
10.
11.
A two-pulse degenerate four-wave mixing experiment is analyzed in the case where the medium under investigation can be modeled by two-level systems having unequal permanent dipole moments. By modeling the light pulses by double exponentials [exp(-Gamma/t/)], we give an analytical expression of the third-order nonlinear polarization of the medium. We apply this result to simulate the measured signal in such experiment. We show that in the case of a two-photon transition, a signal can be detected if the pump pulse interacts with the medium before the probe pulse contrary to what is observed for excitations in the resonance region. An attempt to explain this behavior is made and the detected signal is analyzed in terms of pure coherent processes. This effect appears as a signature of the presence of permanent dipole moments. To test this property on a more realistic system, we then have considered a one-dimensional frequency-selected infrared degenerate four-wave mixing experiment on a molecular anharmonic vibrational mode modeled by a Morse potential and coupled to a dissipative bath of harmonic oscillators. We show that the two-photon transitions allowed by the presence of permanent dipole moments enable to analyze the multilevel system dynamics as if they were the one of a two-level system. Our results can also be extended to the case of inhomogeneous broadening and are of interest to study the infrared photon-echo response of anharmonic vibrational modes.  相似文献   

12.
Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.  相似文献   

13.
This paper is a straightforward generalization of Maierle-Harris proposal regarding parity implications on the superpositions of chiral states of a molecule. It is shown that the inclusion of electric quadrupole and magnetic dipole interactions removes several of restrictions on the preparation of superpositions of mid R:L and mid R:R states of a chiral molecule. It is also found that the dephasing of mid R:L and mid R:R superpositions, due to the spontaneous emission from the chiral molecule, has opposing contributions from electric quadrupole-magnetic dipole and electric dipole interactions.  相似文献   

14.
The Stark effect has been observed in the rotational spectra of several gas-phase amine-hydrogen halide complexes and the following electric dipole moments have been determined: H(3)(15)N-H(35)Cl (4.05865 +/- 0.00095 D), (CH(3))(3)(15)N-H(35)Cl (7.128 +/- 0.012 D), H(3)(15)N-H(79)Br (4.2577 +/- 0.0022 D), and (CH(3))(3)(15)N-H(79)Br (8.397 +/- 0.014 D). Calculations of the binding energies and electric dipole moments for the full set of complexes R(n)()(CH(3))(3)(-)(n)()N-HX (n = 0-3; X = F, Cl, Br) at the MP2/aug-cc-pVDZ level are also reported. The block localized wave function (BLW) energy decomposition method has been used to partition the binding energies into contributions from electrostatic, exchange, distortion, polarization, and charge-transfer terms. Similarly, the calculated dipole moments have been decomposed into distortion, polarization, and charge-transfer components. The complexes studied range from hydrogen-bonded systems to proton-transferred ion pairs, and the total interaction energies vary from 7 to 17 kcal/mol across the series. The individual energy components show a much wider variation than this, but cancellation of terms accounts for the relatively narrow range of net binding energies. For both the hydrogen-bonded complexes and the proton-transferred ion pairs, the electrostatic and exchange terms have magnitudes that increase with the degree of proton transfer but are of opposite sign, leaving most of the net stabilization to arise from polarization and charge transfer. In all of the systems studied, the polarization terms contribute the most to the induced dipole moment, followed by smaller but still significant contributions from charge transfer. A significant contribution to the induced moment of the ion pairs also arises from distortion of the HX monomer.  相似文献   

15.
A number of low-N lines of the X (6)Sigma(+)<--A (6)Sigma(+)(0,0) band of chromium monodeuteride, CrD, have been recorded at near the natural linewidth limit by high resolution laser excitation spectroscopy of a supersonic molecular beam sample. The shifts and splitting of these lines caused by a static electric field have been analyzed to give the permanent electric dipole moments of the X (6)Sigma(+)(upsilon=0) and A (6)Sigma(+)(upsilon=0) states as 3.510(33) and 1.153(3) D, respectively. The dipole moment of the A (6)Sigma(+)(upsilon=0) state can be measured with higher precision because of some interesting near degeneracies in its level structure. The trends in the observed dipole moments for the first-row transition metal monohydrides are rationalized and compared with theoretical predictions.  相似文献   

16.
An upper bound can be set to the dipole moment of the X-H bond (with X+H polarity) for symmetrical molecules of XH4 and XH3 type from the experimental values of the g factor and bond length. The following upper bounds have been found to the bond dipole moments: CH4 (C+H<0.902 D, SiH4, (Si+H)<4.21 D, GeH4+ (Ge+H)<3.59 D, NH3 (N+H)<0, PH3 (P+H)<2.74 D. These results enable one to rule out certain published data on the dipole moment of the C-H bond in methane as certainly incorrect. In the case of the ammonia molecule, the possibility of N+H polarity is ruled out.Translated from Teoreticheskaya i Éksperimental'naya Khitniya, No. 3, pp. 346–350, May–June, 1985.  相似文献   

17.
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, “naively” defined local dipole moments are origin‐dependent. Inspired by previous work based on Bader's atoms‐in‐molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin‐independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
19.
A detailed survey has been made of the potentialities of the VESCF molecular orbital procedure for computing electric dipole moments of conjugated molecules. Forty-one molecules, ranging from non-alternant hydrocarbons to a wide variety of heterocycles and benzene derivatives have been studied. The agreement between theory and experiment is always within 0.4 D and notably better than has been achieved by any alternative theoretical procedure so far. Some assessment is made of the relative merits of alternative techniques for dealing with neutral-atom penetration integrals and with two-electron coulomb integrals. Comments are made on the contributions of -bond polarities and of hydrogen atom hybridization moments.The possibility that the present procedure for treating heterocyclic oxygen is less satisfactory than for nitrogen is indicated, the molecules showing greatest deviations from experiment being oxygen heterocycles.The present study points up the fact that for some of the key molecules studied the experimental values are of uncertain reliability or, occasionally, not yet available.
Zusammenfassung Im Rahmen der VESCF-Methode sind die Dipolmomente von 41 Molekülen mit konjugierten Systemen berechnet worden, beginnend mit nicht alternierenden Kohlenwasserstoffen bis zu einer Reihe von Heterocyclen und Benzolderivaten. Theorie und Experiment stimmen in den meisten Fällen bis auf 0.4 D — und damit wesentlich besser als bei den meisten bisherigen Verfahren — überein. Einige Bemerkungen in bezug auf die Vorteile einzelner Methoden, Durchdringungs- und Coulombintegrale zu behandeln, auf den Beitrag der -Elektronen und der Wasserstoffhybridisierungsmomente werden zur Ergänzung gemacht.Die angewandte Methode scheint zur Behandlung von Heterosauerstoff weniger geeignet als für Stickstoff zu sein, da Moleküle mit Sauerstoff die größten Abweichungen vom Experiment zeigen. Andererseits zeigt sich, daß die experimentellen Werte für einige wichtige Moleküle zweifelhaft sind.

Résumé Etude détaillée des possibilités de la méthode des orbitales moléculaires SCF à électronégativité variable pour le calcul des moments dipolaires électriques des molécules conjuguées. L'étude a porté sur quarante et une molécules s'étendant d'hydrocarbures non alternants jusqu'à une large classe de dérivés benzéniques et d'hétérocycles. L'accord entre la théorie et l'expérience est presque toujours à moins de 0,4 D, étant notablement meilleur que celui obtenu jusqu'alors par une autre technique. On établit en partie les mérites relatifs des différentes techniques d'utilisation des intégrales de pénétration et des intégrales coulombiennes. On fait des commentaires sur les contributions des polarités des liaisons et des moments d'hybridation de l'atome d'hydrogène.On mentionne la possibilité pour le présent procédé de traiter l'oxygène hétérocyclique d'une manière moins satisfaisante que l'azote, les heterocycles oxygénés étant les molécules présentant le plus grand désaccord avec l'expérience.Cette étude souligne le fait que pour certaines molécules clés les données expérimentales sont peu certaines sinon inexistantes.
  相似文献   

20.
Electric field gradients at the nuclei of halogen atoms are calculated using a finite field approach. The four-component Dirac-Coulomb Hamiltonian serves as the framework, all electrons are correlated by the relativistic Fock-space coupled cluster method with single and double excitations, and the Gaunt term, the main part of the Breit interaction, is included. Large basis sets (e.g., 28s24p21d9f4g2h Gaussian-type functions for I) are used. Combined with experimental nuclear quadrupole coupling constants, accurate estimates of the nuclear quadrupole moments are obtained. The calculated values are Q(35Cl)=-81.1(1.2) mb, Q(79Br)=302(5) mb, and Q(127I)=-680(10) mb. Currently accepted reference values [Pyykko, Mol. Phys. 99, 1617 (2001)] are -81.65(80), 313(3), and -710(10) mb, respectively. Our values are lower for the heavier halogens, corroborating the recent work of van Stralen and Visscher [Mol. Phys. 101, 2115 (2003)], who obtained Q(127I)=-696(12) mb in a series of molecular calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号