首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of haemoglobin (Hb) at the interface between two immiscible electrolyte solutions (ITIES) has been examined for analytical purposes. When Hb is fully protonated under acidic conditions (pH <pI) in the aqueous phase, it undergoes a potential-dependent adsorption and complexation, at the interface, with the anions of the organic phase electrolyte. When utilised as a simple and fast preconcentration step, consisting of adsorbing the protein at the interface, in conjunction with voltammetric desorption, this opens up the ITIES to the adsorptive stripping voltammetry approach. Utilising a 60 s adsorption step and linear sweep voltammetry, a linear response to Hb concentration in aqueous solution over the range 0.01–0.5 μM was achieved. The equation of the best-fit straight line was I p ? =?7.46 C???0.109, R?=?0.996, where I p is the peak current (in nanoampere) and C is haemoglobin concentration (in micromolar). The calculated detection limit (3σ) was 48 nM for a 60 s preconcentration period, while the relative standard deviation was 13.3 % for six successive measurements at 0.1 μM Hb. These results illustrate the prospects for simple, portable and rapid label-free detection of biomacromolecules offered by electrochemistry at arrays of liquid–liquid microinterfaces.  相似文献   

2.
We report the dielectric relaxation behaviour in the antiferroelectric SmCA* and ferrielectric SmCγ* phases of the antiferroelectric liquid crystal 4-[5-(4-octloxyphenyl)-2-pyrimidinyl]phenyl 4,4,4-trifluoro-3-(methoxyphenyl)butanoate which shows an antiferroelectric transition at around 88±0.1°C. In the SmCA* phase, two dielectric relaxation modes have been found, namely the usual antiferroelectric Goldstone mode and another arising from molecular rotation around its short axis. In the SmCγ* phase, one dielectric relaxation mode has been observed due to the ferrielectric Goldstone mode. Dielectric increments and relaxation frequencies of the antiferroelectric and ferrielectric phases are estimated from the fits of the Cole–Cole function of the dielectric spectrum. The dependence of the bias field in the ferrielectric phase is also discussed.  相似文献   

3.
A simple, rapid and efficient method, ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME), has been developed for the first time for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in water samples. The chemical affinity between the ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate) and the analytes permits the extraction of the PAHs from the sample matrix also allowing their preconcentration. Thus, this technique combines extraction and concentration of the analytes into one step and avoids using toxic chlorinated solvents. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, extraction time, dispersion stage, centrifuging time and ionic strength, were optimised. Analysis of extracts was performed by high performance liquid chromatography (HPLC) coupled with fluorescence detection (Flu). The optimised method exhibited a good precision level with relative standard deviation values between 1.2% and 5.7%. Quantification limits obtained for all of these considered compounds (between 0.1 and 7 ng L−1) were well below the limits recommended in the EU. The extraction yields for the different compounds obtained by IL-DLLME, ranged from 90.3% to 103.8%. Furthermore, high enrichment factors (301–346) were also achieved. The extraction efficiency of the optimised method is compared with that achieved by liquid–liquid extraction. Finally, the proposed method was successfully applied to the analysis of PAHs in real water samples (tap, bottled, fountain, well, river, rainwater, treated and raw wastewater).  相似文献   

4.
A rapid and simple microextraction method with a high sample clean-up, termed as tandem air-agitated liquid–liquid microextraction (TAALLME), is described. This method is based upon the tandem implementation of the air-agitated liquid–liquid microextraction (AALLME), and this approach improves the applicability of the dispersive liquid–liquid microextraction (DLLME) methods in complicated matrices. With very simple tools, the three non-steroidal anti-inflammatory drugs diclofenac, ibuprofen, and mefenamic acid were efficiently extracted, with an overall extraction time of 7 min. By performing the first AALLME, these acidic analytes, contained in an aqueous sample solution (donor phase, 8.0 mL), were extracted into the organic solvent (1,2-dichloroethane, 37 μL), and their simple back-extraction into the aqueous acceptor solution (pH, 10.01, 51 μL) was obtained in 2 min by a second implementation of AALLME. Response surface methodology (RSM) was used for optimization of the experimental parameters. The pH values 2.94 and 10.01 were obtained for the donor and acceptor phases, respectively, and the volumes 99.5 and 51 μL were obtained for the organic solvent and the acceptor phase, respectively, as the optimal extraction conditions. Under the optimized conditions, tandem AALLME-HPLC-UV provided a good linearity in the range of 0.5–4000 ng mL−1, limits of detection (0.1–0.3 ng mL−1), extraction repeatabilities (relative standard deviations (RSDs) below 7.7%, n = 5), and the enrichment factors (EFs) of 80–104. Finally, the applicability of the proposed method was evaluated by the extraction and determination of the drugs under study in the wastewater and human plasma samples.  相似文献   

5.
A simple technique of support-free liquid–liquid chromatography is suggested that operates without incorporation of a centrifuge. The pulsed chromatography apparatus consists of a stationary coiled tube and a pulsation device to produce reciprocating motion of liquid phases within each individual coil segment. This reciprocating motion generates a centrifugal force field varying in intensity and direction that leads to an improved mixing of the two liquid phases and retains the stationary phase in the coiled tubing. The intensity of the back and forth motion of liquid phases within each coil unit can be varied by varying the frequency and/or the amplitude of the pulsations generated by the pulsation device. As the magnitude of the stationary phase retention is of paramount importance for success of the technique, the retention of the stationary phase in the pulsed coil column was experimentally studied. A few experiments were conducted to test the chromatographic behavior of valeric (n-pentanoic) and caproic (n-hexanoic) acids. The results obtained demonstrate the potential of the new separation method for preparative purposes.  相似文献   

6.
Electrochemical formation of cesium–tin alloys in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPTFSA) containing 0.5 M CsTFSA has been studied. Cathodic decomposition of BMPTFSA on a platinum electrode was suppressed by addition of CsTFSA, suggesting that Cs+ accumulated on the electrode surface and hindered the reduction of BMPTFSA. Multiple cathodic current peaks were observed on a tin electrode in the ionic liquid. Energy-dispersive X-ray analysis and X-ray diffraction results suggested formation of cesium–tin alloys after potentiostatic cathodic reduction on the tin electrode at room temperature.  相似文献   

7.
The phase behaviour of a number of N‐alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X‐ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50°C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at “Plateau borders” with three or more sides. Where walls meet three at a time, they do so at approximately 120° angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self‐organised monodomains, as observed in these systems, is expected to play an important role in potential applications.  相似文献   

8.
Two approaches for applying the Onsager-Kirkwood-Fr?hlich equation to liquid mixtures are revisited at the light of recent developments leading to the estimation of relative permittivities and refractive indices of thermodynamically ideal liquid mixtures. From the one-liquid approach, the squared permanent dipole moment of the mixture molecular-equivalent species M is demonstrated to be a mole-fraction average of squared permanent dipole moments of the components. An expression is obtained for calculating the ideal Kirkwood correlation factor of M at any composition by using only pure-constituent properties. From the two-liquid approach (B?ttcher's equation), equations are obtained to describe the dependence on composition of the Kirkwood correlation factor of both components in the ideal mixture, even in mixtures of Onsager liquids. This dependency is tentatively ascribed to London dispersion forces acting between unlike molecules. It is demonstrated that B?ttcher's equation can only be applied to mixtures where the relative permittivity of each component is larger than the squared refractive index of the other component. From the interplay of one- and two-liquid approaches, the ideal Kirkwood correlation factor of M and of both constituents are inter-related. Thermodynamic expressions are given for the calculation of excess Kirkwood correlation factors. In the case where permanent dipole moments are unknown, the ratio excess/ideal, termed the relative excess Kirkwood correlation factor for components and species M can still be evaluated. These ratios are related to more conventional excess properties. Density, relative permittivity and refractive index data are reported for binary mixtures of 2,2,2-trifluoroethanol with mono-, di-, tri- or tetra-glyme over the whole composition range at 288 K and 298 K. For these systems, ideal, excess and relative excess and Kirkwood correlation factors are calculated and discussed. In particular, by regarding Kirkwood correlation factors as a measure of order/molecular organisation in liquid mixtures, it is found that the formation of ideal mixtures entails a decrease of order which, for the present binary systems, is almost cancelled out upon passage to the corresponding real mixtures. It is concluded that the present formulation permits to estimate Kirkwood correlation factors of each constituent of liquid mixtures and thereby to draw information on their molecular organisation.  相似文献   

9.
《Fluid Phase Equilibria》2002,201(1):19-35
Liquid–liquid equilibria of copolymer mixtures were studied by an equation of state (EoS) for chain-like fluids. The equation consists of a reference term for hetero-nuclear hard-sphere chain fluids developed by Hu et al. where the next-to-nearest-neighbor correlations have been taken into account; and a perturbation term from Alder et al.’s square-well attractive potential. The segment parameters, including number of segments, segment diameter and interaction energy between segments, are obtained by fitting pVT data of pure homopolymer. For the case of different species in the same copolymer, the interaction parameters for unlike segment pairs are obtained by fitting pVT data of pure copolymer. For the interaction between segment of homopolymer and different species in copolymer, the parameters are treated as adjustable by fitting liquid–liquid equilibria data. In the latter case, the difference between different species in a copolymer is simply neglected as an approximation. Therefore, in general, only one pair of adjustable interaction parameter is determined from LLE data. To model miscibility maps of copolymer mixtures having two or three kinds of species, the interaction parameters are obtained from the boundary between miscible and immiscible regions. The EoS used in this work can correlate phase behavior including coexistence curves, miscibility windows and miscibility maps.  相似文献   

10.
A new method has been developed for liquid–liquid microextraction utilizing a circulation microchannel. A glass microchemical chip having a circular shallow microchannel in contact with a surrounding deeper microchannel was fabricated by a two-step photolithographic wet-etching technique. Surface modification reagent was selectively introduced to the shallow channel by utilizing capillary force, and the surface of the shallow channel was selectively made hydrophobic. With the aid of the hydrophobic/hydrophilic surface patterning, it was possible to keep organic solvent in the circular channel while the aqueous sample solution was continuously flowing in the deep channel. As a result, concentration extraction from sample solution to stationary extractant with a nanoliter scale volume became possible. Concentration extraction has been difficult in a multiphase continuous flow. Function of the newly developed microextraction system was verified with methyl red as a test sample, and concentration extraction to reach equilibrium was successfully carried out. A novel surface modification method utilizing frozen liquid as a masking material was also developed as a reverse process to make the shallow channel hydrophilic and the deep channel hydrophobic. Visualization of circulation motion inside the circular shallow channel induced by flow in the deep channel was observed with a particle tracing method.  相似文献   

11.
The modeling of reactivity in an ionic liquid is examined with DFT and DFT/MM calculations on the S(N)2 intramolecular rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2,5-diphenyl-1,2,3-triazole induced by amines. Experimental research has shown that the reaction occurs in 1-butyl-3-methylimidazolium tetrafluoroborate, and in conventional organic solvents such as acetonitrile with comparable rates. The structure for the reactants, transition states and products for the rate-determining step are optimized, and the energy barrier is computed in three different environments: gas phase, water solvent, and ionic liquid. The results are encouraging in describing the energy barrier in the ionic liquid. A simple model is formulated to explain the effect of the solvent in this particular process, and a procedure to study theoretically the reactivity in an ionic liquid is proposed.  相似文献   

12.
13.
Phase separation of gas–liquid and liquid–liquid microflows in microchannels were examined and characterized by interfacial pressure balance. We considered the conditions of the phase separation, where the phase separation requires a single phase flow in each output of the microchannel. As the interfacial pressure, we considered the pressure difference between the two phases due to pressure loss in each phase and the Laplace pressure generated by the interfacial tension at the interface between the separated phases. When the pressure difference between the two phases is balanced by the Laplace pressure, the contact line between the two phases is static. Since the contact angle characterizing the Laplace pressure is restricted to values between the advancing and receding contact angles, the Laplace pressure has a limit. When the pressure difference between the two phases exceeds the limiting Laplace pressure, one of the phases leaks into the output channel of the other phase, and the phase separation fails. In order to experimentally verify this physical picture, microchips were used having a width of 215 μm and a depth of 34 μm for the liquid–liquid microflows, a width of 100 μm and a depth of 45 μm for the gas–liquid microflows. The experimental results of the liquid–liquid microflows agreed well with the model whilst that of the gas–liquid microflows did not agree with the model because of the compressive properties of the gas phase and evaporation of the liquid phase. The model is useful for general liquid–liquid microflows in continuous flow chemical processing.  相似文献   

14.
During the past 7 years and since the introduction of dispersive liquid–liquid microextraction (DLLME), the method has gained widespread acceptance as a simple, fast, and miniaturized sample preparation technique. Owing to its simplicity of operation, rapidity, low cost, high recovery, and low consumption of organic solvents and reagents, it has been applied for determination of a vast variety of organic and inorganic compounds in different matrices. This review summarizes the DLLME principles, historical developments, and various modes of the technique, recent trends, and selected applications. The main focus is on recent technological advances and important applications of DLLME. In this review, six important aspects in the development of DLLME are discussed: (1) the type of extraction solvent, (2) the type of disperser solvent, (3) combination of DLLME with other extraction methods, (4) automation of DLLME, (5) derivatization reactions in DLLME, and (6) the application of DLLME for metal analysis. Literature published from 2010 to April 2013 is covered.  相似文献   

15.
Dispersive liquid–liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.  相似文献   

16.
Dispersive liquid–liquid microextraction (DLLME) high-performance liquid chromatography (HPLC) was developed for extraction and determination of triazines from honey. A room temperature ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6.], was used as extraction solvent and Triton X 114 was used as dispersant. A mixture of 175 μL [C6MIM][PF6] and 50 μL 10% Triton X 114 was rapidly injected into the 20 mL honey sample by syringe. After extraction, phase separation was performed by centrifugation and the sedimented phase was analyzed by HPLC. Some experimental parameters, such as type and volume of extraction solvent, concentration of dispersant, pH value of sample solution, salt concentration and extraction time were investigated and optimized. The detection limits for chlortoluron, prometon, propazine, linuron and prebane are 6.92, 5.84, 8.55, 8.59 and 5.31 μg kg−1, respectively. The main advantages of the proposed method are simplicity of operation, low cost, high enrichment factor and extraction solvent volume at microliter level. Honey samples were analyzed by the proposed method and obtained results indicated that the proposed method provides acceptable recoveries and precisions.  相似文献   

17.
The adsorption of added 2,2′-bipyridine (2,2′-BP) from 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethanesulfonyl)imide (EMMImNTf2) at an Au(111) electrode has been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Addition of 2,2′-BP to the ionic liquid clearly modifies the interfacial region as a result of the competition between 2,2′-BP and EMMImNTf2 to occupy the electrode surface. Within the region of ideal polarizability, the 2,2′-BP adlayer undergoes structural changes, shown by the presence of peaks in the CV curves. Between −0.2 V and + 0.9 V, the capacitance–potential curves obtained from EIS data present a capacity maximum depending strongly on the ac frequency, which is typical pseudo-capacitive behavior indicative of a reorganization of the interfacial layer. At more positive potentials a true capacity value close to 10 μF.cm 2 and invariant with the potential suggests that the 2,2′-BP molecules adopt a perpendicular orientation with the nitrogen atoms facing the electrode surface, similar to their adsorption on gold from aqueous solutions.  相似文献   

18.
A miniaturized dispersive liquid–liquid microextraction (DLLME) procedure coupled to liquid chromatography (LC) with fluorimetric detection was evaluated for the preconcentration and determination of thiamine (vitamin B1). Derivatization was carried out by chemical oxidation of thiamine with 5 × 10−5 M ferricyanide at pH 13 to form fluorescent thiochrome. For DLLME, 0.5 mL of acetonitrile (dispersing solvent) containing 90 μL of tetrachloroethane (extraction solvent) was rapidly injected into 10 mL of sample solution containing the derivatized thiochrome and 24% (w/v) sodium chloride, thereby forming a cloudy solution. Phase separation was carried out by centrifugation, and a volume of 20 μL of the sedimented phase was submitted to LC. The mobile phase was a mixture of a 90% (v/v) 10 mM KH2PO4 (pH 7) solution and 10% (v/v) acetonitrile at 1 mL min−1. An amide-based stationary phase involving a ligand with amide groups and the endcapping of trimethylsilyl was used. Specificity, linearity, precision, recovery, and sensitivity were satisfactory. Calibration graph was carried out by the standard additions method and was linear between 1 and 10 ng mL−1. The detection limit was 0.09 ng mL−1. The selectivity of the method was judged from the absence of interfering peaks at the thiamine elution time for blank chromatograms of unspiked samples. A relative standard deviation of 3.2% was obtained for a standard solution containing thiamine at 5 ng mL−1. The esters thiamine monophosphate and thiamine pyrophosphate can also be determined by submitting the sample to successive acid and enzymatic treatments. The method was applied to the determination of thiamine in different foods such as beer, brewer’s yeast, honey, and baby foods including infant formulas, fermented milk, cereals, and purees. For the analysis of solid samples, a previous extraction step was applied based on an acid hydrolysis with trichloroacetic acid. The reliability of the procedure was checked by analyzing a certified reference material, pig’s liver (CRM 487). The value obtained was 8.76 ± 0.2 μg g−1 thiamine, which is in excellent agreement with the certified value, 8.6 ± 1.1 μg g−1.  相似文献   

19.
We present the first intrinsic analysis of the surface of the [bmim][PF(6)] room-temperature ionic liquid. Our detailed analysis reveals unprecedented details about the structure of the interface by providing the relative prevalence of different molecular orientations. These results suggest that experimental data should be reinterpreted considering a distribution of molecular arrangements.  相似文献   

20.
N-Protected ??-amino acids, prepared from benzoyl chlorides, KSCN and ??-amino acids, were used as the acid component in the Passerini reaction, in an ionic liquid, to produce functionalized ??-acyloxythioamides in 59?C95% yields. The work-up procedure was fairly simple and the products did not require further purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号