首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and simple method for the determination of two phthalates and five polycyclic musks in water samples using dispersive liquid-liquid microextraction (DLLME) mated to chemometrics and coupled to GC-MS was developed. Volume of extraction (CCl4) and disperser solvent (MeOH), pH, ionic strength, extraction time, centrifugation time as well as centrifugation speed were optimized in a 27-4 Plackett-Burman design. The obtained significant factors were optimized by using a central composite design (CCD) and the quadratic model between the dependent and the independent variables was built. The optimum experimental conditions of the proposed method were: 250 μL carbon tetrachloride, 0.62 mL methanol, 7.5 min centrifugation time, natural pH containing 0% (w/v) NaCl, while keeping centrifugation speed fixed at 4000 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9970 and 0.9992. The repeatability and reproducibility of the proposed method, expressed as relative standard deviation, varied between 2.6% to 9.7% and 5.7% to 12.2%, respectively. The obtained LOD values were in the range of 8-63 ng L−1.  相似文献   

2.
Nielsen AT  Jonsson S 《The Analyst》2002,127(8):1045-1049
A method was developed for the simultaneous determination of the following nine volatile sulfur compounds in gas samples: carbon disulfide, carbonyl sulfide, ethyl sulfide, ethyl methyl sulfide, hydrogen sulfide, isopropanethiol, methanethiol, methyl disulfide and methyl sulfide. The target compounds were preconcentrated by solid-phase microextraction (SPME) and determined by gas chromatography combined with mass spectrometry. Experimental design was employed to optimize the extraction time and temperature and concurrent detection of the nine compounds was achieved by using an SPME fiber coated with Carboxen-polydimethylsiloxane (75 microns). Detection limits ranged from 1 ppt (v/v) for carbon disulfide to 350 ppt (v/v) for hydrogen sulfide and calibration functions were linear up to 20 ppb (v/v) for all the compounds investigated.  相似文献   

3.
The applicability of headspace solid-phase microextraction (HS-SPME) to pesticide determination in water samples was demonstrated by evaluating the effects of temperature on the extraction of the pesticides. The evaluations were performed using an automated system with a heating module. The 174 pesticides that are detectable with gas chromatograph were selected objectively and impartially based on their physical properties: vapor pressure and partition coefficient between octanol and water. Of the 174 pesticides, 158 (90% of tested) were extracted with a polyacrylate-coated fiber between 30 and 100 degrees C and were determined with gas chromatograph-mass spectrometry. The extraction-temperature profiles of the 158 extracted pesticides were obtained to evaluate the effects of temperature on the extraction of pesticides. The pesticides were classified into four groups according to the shape of their extraction-temperature profiles. The line of demarcation between extractable pesticides and non-extractable pesticides could be drawn in the physical property diagram (a double logarithmic plot of their vapor pressure and partition coefficient between octanol and water). The plot also revealed relationships between classified extraction features and their physical properties. The new method for multi residue screening in which the analytes were categorized into sub-groups based on extraction temperature was developed. In order to evaluate the quantitivity of the developed method, the 45 pesticides were chosen among the pesticides that are typically monitored in waters. Linear response data for 40 of the 45 was obtained in the concentration range below 5 microg/l with correlation coefficients ranging between 0.979 and 0.999. The other five pesticides had poor responses. Relative standard deviations at the concentration of the lowest standard solution for each calibration curve of the pesticides ranged from 3.6 to 18%. The value of 0.01 microg/l in the limits of detection for 17 pesticides was achieved only under the approximate conditions for screening, not under the individually optimized conditions for each pesticide. Recoveries of tested pesticides in actual matrices were essentially in agreement with those obtained by solid-phase extraction.  相似文献   

4.
A spectrophotometric method for the determination of triclosan in personal care products was proposed. It was based on the reaction of sodium nitrite with p-sulfanilic acid in an acidic medium to form diazonium ion, with which triclosan further formed an azo compound in an alkaline medium. The resulting yellow colored product has a maximum absorption at 452 nm. A good linear relationship (r = 0.9999) was obtained in the range of 0–30 mg L−1 triclosan. A detection limit of 0.079 g L−1 was achieved and the relative standard deviation was 0.24% (n = 11) at 14 mg L−1 triclosan. The proposed method has been applied to the analyses of triclosan in several personal care products and the results were in good agreement with those obtained by high-performance liquid chromatography.  相似文献   

5.
The use of two automated sample preparation techniques, solid-phase microextraction (SPME) and purge and trap (P&T) systems are critically compared for the GC–MS determination of eight volatile organic compounds (VOCs), including trihalomethanes (THMs), in drinking water samples. Compounds chosen for the comparison are regulated by Spanish and European official guidelines for drinking waters. Experimental parameters investigated for the two sample preparation techniques included SPME type of fibers, SPME modality, P&T gas flow, extraction and desorption times and desorption temperatures. Thus, optimal experimental conditions have been worked out for the SPME and P&T techniques. Under such optimised conditions, detection limits, precision and accuracy were evaluated. Both methods fulfilled the values that the official guidelines establish. The P&T–GC–MS method offers LDs ranged from 0.004 to 0.2 ng mL−1, repeatabilities below 6% and recoveries between 81 and 117%; while LDs ranging from 0.008 to 0.7 ng mL−1, 1–12% R.S.D. and recoveries from 80 to 119% were achieved with the SPME–GC–MS method. Finally, we chose P&T–GC–MS method as the best for this determination and we validate this methodology by its application to the analysis of an Aquacheck Interlaboratory Exercise.  相似文献   

6.
A solid-phase microextraction (SPME) method has been developed for the determination of 7 pyrethroid insecticides (bifenthrin, lambda-cyhalothrin, permethrin, cyfluthrin, cypermethrin, fenvalerate, and tau-fluvalinate) in water, vegetable (tomato), and fruit (strawberry) samples, based on direct immersion mode and subsequent desorption into the injection port of a GC/MS. The SPME procedure showed linear behavior in the range tested (0.5-50 microg L(-1) in water and 0.01-0.1 mg kg(-1) in tomato) with r(2) values ranging between 0.97 and 0.99. For water samples limits of detection ranged between 0.1 and 2 microg L(-1 )with relative standard deviations lower than 20%. Detection limits for tomato samples were between 0.003 and 0.025 mg kg(-1) with relative standard deviations around 25%. Finally, the SPME procedure has been applied to vegetable (tomato) and fruit (strawberry) samples obtained from an experimental plot treated with lambda-cyhalothrin, and in both cases the analyte was detected and quantified using a calibration curve prepared using blank matrix. SPME has been shown to be a simple extraction technique which has a number of advantages such as solvent-free extraction, simplicity, and compatibility with chromatographic analytical systems. Difficulties with the correct quantification in a complex matrix are also discussed.  相似文献   

7.
Summary The optimization of in situ derivatization and preconcentration of formaldehyde in air using solid phase microextraction with gas chromatographic determination was investigated. A dimethylpolysiloxane coating (7 μm) solid-phase microextraction needle was used in the final procedure as a support for derivatizing reagents such as 2,4-dinitrophenylhydrazine and acetylacetone. Standard concentrations of formaldehyde in air were obtained using a headspace technique and equilibrium concentrations of formaldehyde in air were calculated using Henry's law. After derivatization on the fiber, the derivative was thermally desorbed in the injector of a gas chromatograph and analyzed using an electron capture detector. A detection limit of 0.17 mg m−3 was obtained. Calibration was done at 296 K. Reproducibility of the method was 9.6%. Some real air samples were also analyzed. The method is very convenient and ideal for the rapid determination of formaldehyde in air. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   

8.
The prevalence of water disinfection byproducts in drinking water supplies has raised concerns about possible health effects from chronic exposure to these compounds. To support studies exploring the relation between exposure to trihalomethanes (THMs) and health effects, we have developed an automated analytical method using headspace solid-phase microextraction coupled with capillary gas chromatography and mass spectrometry. This method quantitates trace levels of THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) and methyl tertiary-butyl ether in tap water. Detection limits of less than 100 ng/L for all analytes and linear ranges of three orders of magnitude are adequate for measuring the THMs in tap water samples tested from across the United States. THMs are stable for extended periods in tap water samples after quenching of residual chlorine and buffering to pH 6.5, thus enabling larger epidemiologic field studies with simplified sample collection protocols.  相似文献   

9.
采用固相萃取-气相色谱-质谱联用技术,建立了水体中9种药品及个人护理用品(水杨酸、萘普生、布洛芬、对乙酰氨基酚、降固醇酸、三氯生、双氯酚酸、酮洛芬和双酚A)的定量分析方法。水样品经稀盐酸调节至pH=3后,采用Oasis HLB固相萃取小柱进行富集净化;选用三甲基氢氧化硫(TMSH)为衍生化试剂,在常温条件下对目标物进行快速甲基化;以气相色谱-质谱法选择离子监测模式(GC-MS-SIM)进行检测,由2,4,5-涕丙酸为内标进行定量分析。本实验分别对固相萃取和衍生化等前处理条件进行了系统的研究。在优化的实验条件下,方法的回收率为50.7~115.4%,相对标准偏差均不高于10%,检出限为0.03~0.30 μg/L,定量限为0.15~1.50 μg/L。利用该方法对东莞市某农田灌溉水进行了分析,4种目标物在样品中有检出,最大质量浓度范围为0.176~0.998 μg/L。结果表明该方法操作简便,灵敏可靠。  相似文献   

10.
Headspace solid-phase microextraction (HS-SPME) has been developed for the analysis of seven organophosphorus insecticides, i.e. diazinon, fenitrothion, fenthion, ethyl parathion, methyl bromophos, ethyl bromophos and ethion in natural waters. Their determination was carried out using gas chromatography with flame thermionic and mass spectrometric detection. To perform the HS-SPME, two types of fibre have been assayed and compared: polyacrylate (PA 85 microm), and polydimethylsiloxane (PDMS 100 microm). The main parameters affecting the HS-SPME process such as temperature, salt additives, memory effect, stirring rate and adsorption-time profile were studied. The method was developed using spiked natural waters such as ground, sea, river and lake water in a concentration range of 0.05-1 microg/l. The HS-SPME conditions were optimized in order to obtain the maximum sensitivity. Detection limits varied from 0.01 to 0.04 microg/l and relative standard deviations (RSD <17%) were obtained showing that the precision of the method is reliable. The method showed also good linearity for the tested concentration range with regression coefficients ranging between 0.985 and 0.999. Recoveries were in relatively high levels for all the analytes and ranged from 80 to 120%. Water samples collected from different stations along the flow of Kalamas river (NW Greece) were analyzed using the optimized conditions in order to evaluate the potential of the proposed method to the trace-level screening determination of organophosphorus insecticides. The analysis with HS-SPME has less background interference and the advantage of its non-destructive nature reveal the possibility of the repetitive use of the SPME fibre.  相似文献   

11.
A fully automated method for determining nine Environmental Protection Agency N-nitrosamines in several types of environmental waters at ng/L levels is presented. The method is based on a headspace solid-phase microextraction followed by GC-MS-MS using chemical ionization. Three different fibers (carboxen/PDMS, divinylbenzene/carboxen/PDMS, and PEG) were tested. Solid-phase microextraction conditions were best when a divinylbenzene/carboxen/PDMS fiber was exposed for 60?min in the headspace of 10?mL water samples at pH 7 containing 360?g/L of NaCl, at 45°C. All compounds were analyzed by GC-MS-MS within 18?min. The method was validated using effluent from an urban wastewater treatment plant and the LODs ranged from 1 to 5?ng/L. The method was then applied to determine the N-nitrosamines in samples of different complexities, such as tap water and several influent and effluent wastewater samples from urban and industrial wastewater treatment plants and a potable water treatment plant. Although the analysis of influent industrial wastewater revealed high concentrations of some compounds (N-nitrosomorpholine and N-nitrosodimethylamine at μg/L levels), in industrial effluents and other samples, the concentrations were substantially lower (ng/L levels). The new method is suitable for the simple and reliable determination of N-nitrosamines in highly complex water samples in a completely automated procedure.  相似文献   

12.
A solid-phase microextraction (SPME) procedure was developed for the determination of 10 selected organonitrogen herbicides (s-ethyl dibropylthiocarbamate [EPTC], molinate, propachlor, trifluralin, simazine, atrazine, propazine, terbuthylazine, alachlor, and prometryn) and was tested with various natural waters. Gas chromatography coupled with flame thermionic and mass spectrometric detection was used for quantitation. For this purpose, polydimethylsiloxane and polyacrylate fibers were used and the factors affecting the SPME process such as pH, ionic strength, methanol content, memory effect, stirring rate, and adsorption-time profile were investigated and optimized. By using spiked liquid chromatography water, optimal factors were determined to be 25% salt, <0.5% methanol, stirring rate of 960 rpm, pH 4, and an equilibrium time of 30 min. These conditions were used in further studies of the fibers and in analysis of natural water samples. The method was applied to spiked natural waters such as ground water, sea water, lake water, and river water at a concentration range of 0.5-10 microg/L. Limits of detection ranged from 5 to 90 ng/L, and precision ranged from 5 to 15% (as relative standard deviation), depending on the pesticide, fiber, and detector used. The recoveries of herbicides were 70.2-118.4%, and the average r2 values of the calibration curves were >0.99 for all analytes. The results demonstrate the suitability of the SPME method to determine these organonitrogen herbicides in various natural waters. River water samples originating from the Epirus region (Northwestern Greece) were analyzed to verify the performance of the optimized method by comparing the results obtained by SPME with those obtained by using conventional solid-phase extraction of the selected herbicides.  相似文献   

13.
Eleven phenolic compounds considered by the Environmental Protection Agency to be priority pollutants are extracted and determined in different water samples. The method involves the extraction and clean-up step of target compounds by solid-phase microextraction and micellar desorption (SPME-MD) and a second step of determination by liquid chromatography with diode array detection. Different fibers and surfactants are evaluated for the analysis of these target analytes in water samples. In the optimum conditions for the SPME process, recoveries for the target compounds are between 80% and 109%; relative standard deviations are lower than 10%, and detection limits are in the range 0.3-3.5 ng/mL. The main advantages of this method are the combination of time and efficiency, safety, and an environmentally friendly process for sample extraction prior to instrumental determination. This demonstrates that SPME-MD can be used as an alternative to traditional methods for the extraction and determination of priority phenolic compounds in natural waters from different origins.  相似文献   

14.
Caffeine concentrations in beverages were determined using a simple and rapid method based on microextraction of caffeine onto the surface of a fused-silica fiber. The uncoated fiber was dipped into the beverage sample for 5 min after the addition of isotopically labeled (trimethyl 13C)caffeine. The adsorbed caffeine was then thermally desorbed in a conventional split/splitless injection port, and the concentration of caffeine was determined using gas chromatography with mass spectrometric detection. Quantitative reproducibilities were ca. 5% (relative standard deviation) and the entire scheme including sample preparation and gas chromatographic analysis was completed in ca. 15 min per sample. The potential of the microextraction technique for the analysis of flavor and fragrance compounds in non-caffeinated beverages is also demonstrated. Since no solvents or class-fractionation steps are required, the method has good potential for automation.  相似文献   

15.
Quantification of unsymmetrical dimethylhydrazine transformation products in ambient air is important for assessing the environmental impact of heavy rocket launches. There are very little data of such analyses, which is mainly caused by the low number of analytes covered by the available analytical methods and their complexity. A simple and cost-efficient method for accurate simultaneous determination of seven unsymmetrical dimethylhydrazine transformation products in air using solid-phase microextraction followed by gas chromatography-mass spectrometry was developed. The method was optimized for air sampling and solid-phase microextraction from 20-mL vials, which allows full automation of analysis. The extraction for 5 min by Carboxen/polydimethylsiloxane fiber from amber vials and desorption for 3 min provided the greatest analytes' responses, lowest relative standard deviations, linear calibration (R2 ≥ 0.99), and limits of detection from 0.12 to 0.5 μg/m3. Samples with concentrations 500 μg/m3 can be stored at 21 ± 1°C without substantial losses (1–11%) for up to 24 h, while air samples with concentrations 10 and 50 μg/m3 stored for up to 24 h can be used for accurate quantification of only two and four out of seven analytes, respectively. The developed method was successfully tested for the analysis of air above real soil samples contaminated with unsymmetrical dimethylhydrazine rocket fuel.  相似文献   

16.
通过基质固相分散净化,气相色谱-电子捕获检测器(GC-μ-ECD)检测,建立了竹笋中7种农药多残留测定方法,实现了对竹笋中六六六、滴滴涕、五氯硝基苯、甲氰菊酯、氯氰菊酯、三氟氯氰菊酯和毒死蜱农药多残留的同时测定。在0.05~0.2 mg/kg添加水平下,7种农药的回收率在82.2%~123.5%之间,相对标准偏差(RSD)均小于6.1%。该方法适用于竹笋中农药多残留的检测。  相似文献   

17.
《Analytica chimica acta》2004,506(1):71-80
We describe an estimation of measurement uncertainty calculated by the “bottom-up” approach for the determination of the oestrogenic compound nonylphenol in treated water samples by solid-phase extraction (SPE) and solid-phase microextraction (SPME) procedures and GC/MS detection. The results were compared and the different contributions to the uncertainty were evaluated. A study of the linear range was established and validation was performed for both methods using statistical analysis of several indicative parameters. In terms of validation data, precision (R.S.D. values <20%) and trueness (relative error <11%) were obtained for both methods under day-to-day conditions. The results of the estimation of measurement uncertainty obtained for both methods for concentrations higher than 1 μg/l have demonstrated that the time-consuming SPE method has a lower relative uncertainty (32%) than the SPME method (42.8%). The chromatographic uncertainty value was the main factor in the SPME method whereas the recovery factor (used to calculate the concentration) was the main contribution to uncertainty in the SPE method.  相似文献   

18.
建立了顶空固相微萃取-气相色谱-质谱联用(HS-SPME-GC-MS)分析紫云英蜂蜜香味成分的方法。采用质谱谱库检索结合化合物保留指数定性分析色谱峰,面积归一化法进行定量分析。从紫云英蜂蜜中分离了68个组份,定性了其中的49个,占总峰面积的92.24%。紫云英蜂蜜香味的主要成分为醛类(61.2%)、醇类(14.29%)和酯类(2.38%)。  相似文献   

19.
An analytical procedure based on headspace solid-phase microextraction (SPME) coupled to GC-flame ionization detection/Negative Chemical Ionization Mass Spectrometry has been developed for the determination of free volatile fatty acids (C2-C7) in waste water samples. Five different coatings have been evaluated and polydimethylsiloxane-Carboxen was the only fiber that allows a successful extraction of the shortest chain fatty acids (acetic and propionic). Several parameters such as extraction time and temperature, desorption conditions, agitation speed and sample volume have been optimized using the polydimethylsiloxane-Carboxen fiber. The linear dynamic range was over two-four orders of magnitude, depending on the acid. Procedural detection limits were in the low to medium microg/l levels and the RSDs were between 5.6% and 13.3%. To evaluate the applicability of the developed SPME procedure on real samples, fermented urban wastewaters were analysed.  相似文献   

20.
固相微萃取(SPME)是以固相萃取(SPE)为基础发展起来的新方法。在多次实验后发现,主要成分为碳的铅笔芯在经过一定的物理,化学处理后对被分析物能产生定量吸附,因此可用作SPME的萃取基质。对该吸附基质,选择了其萃取、解吸的最佳条件如:萃取时间,水浴温度,搅拌速度,解吸时间及温度等。在选定的最佳条件下,以铅笔芯作吸附基质对甲醇进行顶空 固相微萃取测定,其线性范围是5×10-6~2×10-7g/mL,线性相关系数r=0.9975。富集20min后,检出限为0.5×10-7g/mL。使用该法测定了5种酒中的甲醇含量,回收率在95%~110%之间。在对同一样品的3次平行测定中,其相对标准偏差在6%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号