首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonolysis of argon-saturated aqueous solutions of the nonvolatile surfactants sodium dodecyl sulfate (SDS) and sodium 1-pentanesulfonate (SPSo) was investigated at three ultrasonic frequencies under both continuous wave (CW) and pulsed ultrasound. Secondary carbon-centered radicals were detected by spin trapping using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and electron paramagnetic resonance (EPR) spectroscopy. Following sonolysis, -*CH- radicals were observed for both surfactants under both sonication modes. Under CW at 354 kHz, the maximum plateau -*CH- radical yield was higher for SPSo than for SDS, indicating that SDS, which is more surface active under equilibrium conditions, accumulates at the gas/solution interface of cavitation bubbles to a lesser degree, compared with the less surface active surfactant, SPSo. However, after sonolysis (354 kHz) under pulsed ultrasound with a pulse length of 100 ms and an interval of 500 ms, the -*CH- radical yield at the plateau concentrations was higher for SDS than for SPSo due to increased amounts of SDS accumulation on the bubble surfaces. In contrast to the findings following sonolysis at 354 kHz, sonolysis of aqueous surfactant solutions at 620 kHz and 803 kHz showed a higher -*CH- radical yield for SDS compared with SPSo under CW but lower -*CH- radical yield with increasing pulsing interval, indicating a frequency dependence on accumulation. Results indicate that pulsing the ultrasonic wave has a significant effect on the relative adsorption ability of n-alkyl surfactants at the gas/solution surface of cavitation bubbles.  相似文献   

2.
The degradation of nonvolatile surfactants sodium 4-octylbenzene sulfonate (OBS) and dodecylbenzenesulfonate (DBS) and a nonvolatile nonsurfactant 4-ethylbenzene sulfonic acid (EBS), as single components and binary mixtures, were studied under 354 kHz ultrasound. In addition, the effects of pulsed ultrasound on degradation were also examined. Results show that in mixtures of the surfactant OBS and nonsurfactant EBS, the surfactant is selectively degraded. The reduced degradation of EBS was dependent on the mixed molar ratio of EBS/OBS. The degradation of OBS was unaffected by the presence of EBS at a molar ratio of OBS/EBS > or = 1. Furthermore, OBS degradation was significantly enhanced under pulsed ultrasound. In OBS and DBS surfactant mixtures sonicated under pulsed ultrasound, surfactants strongly affected each other's degradation rates due to competition for the reaction sites on the cavitation bubble surfaces. OBS exhibits a faster degradation rate than DBS at shorter pulse intervals due to its faster rate of transfer to the cavitation bubble interfaces. At longer pulse intervals, DBS, which is more surface active, degrades faster than OBS due to the increased amounts of DBS accumulation on the bubble surfaces.  相似文献   

3.
The application of pulsed ultrasound for the degradation of the nonvolatile surfactants sodium 4-octylbenzene sulfonate (OBS) and sodium dodecylbenzenesulfonate (DBS) was investigated at a frequency of 354 kHz. By comparing the degradation rate constants with those of continuous wave (CW) ultrasound, observed pulse enhancements were found to be dependent on the pulse length, pulse ratio, initial concentration, and surface activity of the surfactants. For a pulse length of 100 ms and a pulse ratio of 1:1 (equal on/off times), the degradation rate constant of 1 mM OBS was nearly twice the value for CW. Furthermore, the degradation rate constant for 1 mM DBS increased significantly when sonicated under a pulse length of 100 ms and a pulse on/off ratio of 1:50. However, the degradation rate of 0.1 mM OBS increased by only 30% with a 100 ms pulse length and pulse ratio of 1:1 as compared to CW, indicating concentration dependence. The enhanced degradation of surfactants by pulsed ultrasound was attributed to the accumulation of surfactants on cavitation bubble surfaces. In addition, as compared to shorter pulse intervals, longer pulse intervals enhanced DBS degradation, indicating that DBS, a more surface active compound, accumulated and equilibrated with the bubble interface more slowly.  相似文献   

4.
The mechanism of the effect of particle addition on sonochemical reaction is studied through the measurements of frequency spectrum of sound intensity for evaluating the cavitation noise and the absorbance for the liberation of iodine from an aqueous solution of KI as an index of oxidation reaction by ultrasonic irradiation in the presence or absence of alumina particles. As it is expected that both the acoustic noise and a rise in temperature in the liquid irradiated by intense ultrasound will increase with the number of collapsing bubbles, these are supposed to be the best tools for evaluating the relative number of bubbles. In the present investigation, it has been shown that the addition of particles with appropriate amount and size results in an increase in the absorbance when both the acoustic noise and the rise in the liquid temperature due to cavitation bubbles also increase. This suggests that the enhancement in the yield of sonochemical reaction by appropriate particle addition comes from an increase in the number of cavitation bubbles. The existence of particle in liquid provides a nucleation site for cavitation bubble due to its surface roughness, leading to the decrease in the cavitation threshold responsible for the increase in the number of bubbles when the liquid is irradiated by ultrasound. Thus, from the present investigation, it is clarified that the particle addition has a potential to enhance the yield in the sonochemical reaction.  相似文献   

5.
The acoustic emission from collapsing cavitation bubbles generated using ultrasound of 20 kHz and 515 kHz frequencies in water has been measured and correlated with sonoluminescence and hydroxyl radical production to yield further information on the frequency dependence of sonochemical reactions. A reasonable correlation was found, and the results suggest differences in the predominant types of cavitation observed under laboratory conditions.  相似文献   

6.
Sonochemistry and its dosimetry   总被引:3,自引:0,他引:3  
The effects of ultrasound originate primarily in acoustic cavitation. The cavitation bubbles collapse violently enough to lead to interesting chemical effects, known as sonochemistry. There is a great need to relate the efficiency of sonochemical reaction to the energy of ultrasonic irradiation used to produce them. In this paper, three OH radical dosimeters, Fricke dosimeter, terephthalate dosimeter, and iodide dosimeter, are compared from the analytical point of view. The dosimeters based on photometry, i.e., Fricke and iodide, produced reliable and reproducible results, but the sensitivity is not enough for special applications, such as chemical monitoring of single bubble cavitation. The dosimeter based on fluorometry, terephthalate dosimeter, offered high sensitivity, 1.2×1011 molecules ml−1. The effects of some experimental parameters in sonochemistry, i.e., solution temperature and the dissolved gas species, were evaluated with the dosimeters.  相似文献   

7.
An ultrasonic reactor that combined a standing-wave-type transducer and a horn-type emitter was constructed and the ultrasonic frequency of the standing-wave-type transducer was varied and the sonochemical reaction rates were estimated. The synergy effect was observed below 100 kHz. In order to consider the mechanism of effect of synergy, the acoustic noise, the sonochemical luminescence and the bubble behavior in the reactor were investigated. The frequency spectrum of acoustic noise indicated that the synergy effect came from the increase of number of cavitation bubbles.  相似文献   

8.
Numerical simulations of nonequilibrium chemical reactions inside an air bubble in liquid water irradiated by ultrasound have been performed for various ambient bubble radii. The intensity of sonoluminescence (SL) has also been calculated taking into account electron-atom bremsstrahlung, radiative attachment of electrons to neutral molecules, radiative recombination of electrons and ions, chemiluminescence of OH, molecular emission from nitrogen, etc. The lower bound of ambient radius for an active bubble in SL and sonochemical reactions nearly coincides with the Blake threshold for transient cavitation. The upper bound is in the same order of magnitude as that of the linear resonance radius. In actual experiments, however, the distribution of ambient radius for active bubbles may be narrow at around the threshold ambient radius for the shape instability. The threshold peak temperature inside an air bubble for nitrogen burning is higher than that for oxidant formation. The threshold peak temperatures depend on ultrasonic frequency and acoustic amplitude because chemical reactions inside a bubble are in nonequilibrium. The dominant emission mechanism in SL is electron-atom bremsstrahlung except at a lower bubble temperature than 2000 K, for which molecular emissions may be dominant.  相似文献   

9.
The sonolytic degradation of benzoic acid in aqueous solution was investigated at an ultrasonic frequency of 355 kHz. The degradation rate was found to be dependent upon the solution pH and the surface activity of the solute. The degradation rate was favoured at a solution pH lower than the pK a of benzoic acid. At pH < pK a, HPLC, GC and ESMS analysis showed that benzoic acid could be degraded both inside the bubble by pyrolysis and at the bubble/solution interface by the reaction with OH radicals. At higher pH (> pK a) benzoic acid could only react with OH radicals in the bulk solution. During the sonolytic degradation of benzoic acid, mono-hydroxy substituted intermediates were observed as initial products. Further OH radical attack on the mono-hydroxy intermediates led to the formation of di-hydroxy derivatives. Continuous hydroxylation of the intermediates led to ring opening followed by complete mineralization. Mineralization of benzoic acid occurred at a rate of < 40μM/h.  相似文献   

10.
Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.  相似文献   

11.
The processes of formation and accumulation of electric charges in the splitting and deformation of cavitation bubbles in an ultrasonic wave field are considered in terms of the local electrification theory. The influence of different factors on the electrification of the bubble-liquid interface is discussed. It is established that, in the splitting of a cavitation bubble and, possibly, in its deformation, the local field strength near the bubble surface dramatically depends on the radius of the neck formed in the bubble. It is shown that, although the stationary concentration of cavitation bubbles may be very high (~104–105 cm?3), the probability for several deformed cavitation bubbles of “required size” to emit luminescence at a given instant of time depends on the ultrasound intensity and other test conditions, a conclusion supported by experimental data.  相似文献   

12.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

13.
Numerical simulations of bubble oscillations in liquid water irradiated by an ultrasonic wave are performed under the experimental condition for single-bubble sonochemistry reported by Didenko and Suslick [Nature (London) 418, 394 (2002)]. The calculated number of OH radicals dissolving into the surrounding liquid from the interior of the bubble agrees sufficiently with the experimental data. OH radicals created inside a bubble at the end of the bubble collapse gradually dissolve into the surrounding liquid during the contraction phase of an ultrasonic wave although about 30% of the total amount of OH radicals that dissolve into the liquid in one acoustic cycle dissolve in 0.1 micros at around the end of the collapse. The calculated results have indicated that the oxidant produced by a bubble is not only OH radical but also O atom and H2O2. It is suggested that an appreciable amount of O atom is produced by bubbles inside a standing-wave-type sonochemical reactor filled with water in which oxygen is dissolved as in the case of air.  相似文献   

14.
五氯苯酚降解的超声诱导   总被引:10,自引:0,他引:10  
沈壮志  程建政  吴胜举 《化学学报》2003,61(12):2016-2019
人为或自然因素会导致挥发性或不挥发有毒有机物存在于饮用水中,这一现象 已成为国际上共同关心的问题。从长期对健康状况来说,即使不能辨别饮用水中的 味道和气味,但只要有十亿分之几毫克的有毒有机物存在,就足以使水不能饮用。 所以,废水处理刻不容缓。同废水处理相关的实验方法中,超声作为一种处理方法 ,早有报道,因为超声化学效应主要是空化,空化是自由基,特别是羟基自由基产 生的根源,而痉基自由基是强烈而非特殊的氧化物,它能迅速同水中化合物发生反 应。作者以五氯苯酚为模拟水样,分别用低频(16 kHz)和高频[(800 ± 1) kHz]以及其组合进行超声降解研究。研究表明复频降解效果最好,最差为低频。在 Fenton类试剂存在下,与Fenton类单独降解效果相比,复频则是它的20.93倍,高 频是它的4.9倍,低频与它几乎无变化。实验表明,频率组合对有机污染物的降解 是一条有效途径,但需要更进一步的研究。  相似文献   

15.
Cavitation bubble temperatures have been measured using a methyl radical recombination method and compared with the changes in the sonoluminescence intensity in aqueous ethanol solutions over a range of concentrations. Whereas the sonoluminescence intensity was decreased by more than 90% at low ethanol concentrations (<0.1 M), the measured bubble temperatures seem to be unaffected at this level of additive. The cavitation bubble temperatures were noticeably decreased at substantially higher ethanol concentrations (0.5 M). It has been concluded that the methyl radical recombination method does not report on the true sonoluminescence temperatures. However, it does report on the average bubble temperatures at which sonochemical reactions occur.  相似文献   

16.
The effect of initial concentration of linear alkylbenzene sulfonate (LAS: p-octylbenzene sulfonate (LAS C8), p-nonylbenzene sulfonate (LAS C9), p-dodecylbenzene sulfonate (LAS C12)) on the rate of sonochemical degradation was investigated over a wide concentration range under Ar atmosphere by 200 kHz ultrasonic irradiation. The degradation rate of each LAS increased with increasing initial concentration of LAS and then started to decrease with the different behavior depending on the types of LASs. This result indicated that the cavitation efficiency was gradually changed by their concentrations and the optimum LAS concentrations for their effective degradation existed. The maximum degradation rates were observed at 250 μM of LAS C12, 1250 μM of LAS C9, and 2500 μM of LAS C8, respectively. These optimum concentrations were found to be about four to six times smaller than these critical micelle concentrations (CMCs). It was also found that the maximum degradation rates at the optimum concentrations were observed to be almost linearly correlated with their CMCs. Based on the obtained results, it could be suggested that the micelle formation occurs in the interfacial region of cavitation bubbles during rectified diffusion and this phenomenon reduces the cavitation efficiency. In addition, from the results of the rate of the sonochemical degradation of LASs and the yield of hydrogen peroxide, the existence of thermal gradient in the interfacial region of cavitation bubbles was also confirmed.  相似文献   

17.
After analysing the characteristics of bubble cavitation in high-pressure carbon dioxide (CO2) fluid, cavitation conditions and some correlative physical characteristics are investigated. The results show that the ultrasonic intensity of liquid carbon dioxide to make cavitation occur is affected by the initial radius of the bubbles, hydrostatic pressure, temperature and vapour pressure within the bubbles in liquid CO2. At the low frequency of ultrasound, the phase-speed of the liquid CO2 gradually approaches the sound speed of the pure liquid when void fraction increases. At high frequency, the phase-speed is nearly equal to the sound speed in the liquid under different void fractions. The attenuation of ultrasound in liquid carbon dioxide reaches a maximum near the resonance frequency and then decreases when frequency either increases or decreases. At the resonance frequency, the phase-speed and the attenuation increase when the void fraction increases.  相似文献   

18.
A system of equations was obtained to describe the dynamics of bubbles in a cavitation cloud taking into account the interaction of pulsating bubbles involved in translational motion. The kinetics of cavitation bubble concentration changes, changes in the compressibility of the liquid, and phase transitions within a cavitation bubble and in the neighboring volume of the liquid were taken into account. The role played by bubble deformation in a cavitation cloud was considered. The Bernoulli pressure effect was shown to be negligible. The interaction of cavitation bubbles was a substantial factor that strongly influenced the dynamics of bubbles. It was suggested that there was at least one more mechanism that reduced sonoluminescence intensity from the multiple-bubble cavitation field, namely, a fairly high efficiency of sonoluminescence quenching could additionally be related to the arrival of a cumulative liquid stream at the central cavitation bubble region, where the concentration of active species was high. The dynamics of bubbles in the cavitation field is not only related to the expansion and compression of cavitation bubbles in the acoustic field, but also governed to a great extent by their interaction, translational motion, deformation, and the influence of cumulative streams penetrating the bubbles.  相似文献   

19.
Cavitation at the solid surface normally begins with nucleation, in which defects or assembled molecules located at a liquid-solid interface act as nucleation centers and are actively involved in the evolution of cavitation bubbles. Here, we propose a simple approach to evaluate the behavior of cavitation bubbles formed under high intensity ultrasound (20 kHz, 51.3 W cm(-2)) at solid surfaces, based on sonication of patterned substrates with a small roughness (less than 3 nm) and controllable surface energy. A mixture of octadecylphosphonic acid (ODTA) and octadecanethiol (ODT) was stamped on the Si wafer coated with different thicknesses of an aluminium layer (20-500 nm). We investigated the growth mechanism of cavitation bubble nuclei and the evolution of individual pits (defects) formed under sonication on the modified surface. A new activation behavior as a function of Al thickness, sonication time, ultrasonic power and temperature is reported. In this process cooperativity is introduced, as initially formed pits further reduce the energy to form bubbles. Furthermore, cavitation on the patterns is a controllable process, where up to 40-50 min of sonication time only the hydrophobic areas are active nucleation sites. This study provides a convincing proof of our theoretical approach on nucleation.  相似文献   

20.
两种不同类型的声场与声化学产额的关系   总被引:7,自引:0,他引:7  
刘岩 《物理化学学报》2001,17(11):1031-1035
采用声源频率为1.8 MHz的连续声波在声强0~5 W•cm-2间,研究了连续混响声场中声化学产领(以溶液的电导率改变、溶液pH值改变和KI溶液的I2析出量以及空化水中的水合负电子()表征)与声强和超声辐照时间之间的关系.理论推论与实验结果均表明,连续声场中声化学产额与声强、超声辐照时间之间呈线性关系.并证明了声场中声化学反应动力学方程具有简单线性关系,与Henglein等人对脉冲声场中声化学产额与声场参数之间呈非线性关系的研究结果比较,证明对实际工业化运行的声化学反应器,采用连续声波更利于目标反应生成物的控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号