首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a cost-effective procedure for the analysis of short-chain aliphatic amines in water samples using a solid-phase microextraction device. Analyte preconcentration and derivatisation were effected into a capillary column coated with 95% polydimethylsiloxane–5% polydiphenylsiloxane, which was used as the injection loop of a Rheodyne injection valve. The coating was previously loaded with the derivatisation reagent, 9-fluorenylmethyl chloroformate. A volume of 1 mL of samples was then drawn into the capillary column, and the extracted analytes were left to react on the capillary coating for 5 min. Next, the capillary column was cleaned by passing water. Finally, the injection valve was rotated, and the derivatives formed were dynamically desorbed and transferred to the analytical column into the mobile phase. Methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine were selected as model compounds. Excellent sensitivity was achieved, being the limits of detection of 15–200 μg/L when using UV detection and of 0.1–0.4 μg/L by fluorescence.  相似文献   

2.
A procedure for the quantification of 9 organic acids, acetic, formic, citric, tartaric, lactic, malic, succinic, oxalic, and fumaric, in alcoholic and alcohol-free beverages by reversed-phase HPLC on a Pronto-SIL C18 AQ (300 × 3 mm) column (3 μm) with the mobile phase 5 mM Li2SO4 (pH 3.00, H2SO4) at the rate 0.5 mL/min and conductometry detection. The analytical ranges made 5–200 mg/L for tartaric, malic, lactic and acetic acids, 2–200 mg/L for the citric and fumaric, 10–400 mg/L for succinic, 15–400 for oxalic, and 20–200 for the formic acids, and so the detection limits: 1 mg/L for tartaric, formic, malic and fumaric, 2 mg/L for lactic, acetic and citric, 5 mg/L for succinic, and 10 mg/L for oxalic acids. The analysis of alcoholic beverages takes 30–40 min, and of non-alcoholic ones, 20–30 min; the standard deviation of the results of analyses does not exceed 5%.  相似文献   

3.
C. Giachetti 《Chromatographia》1998,48(5-6):443-449
Summary Low amounts of triethanolamine, collected in ORBO 53 tubes during air sampling, required the development of a very sensitive method for determination. After desorption and silylation reaction with trimethylsilyl imidazole/trimethyl chlorosilane, the derivative was analyzed by gas chromatography-mass spectrometry on an Ultra 2 silica capillary column in single ion monitoring mode (retention time: about 6 min). The method has a detection limit of 1–2 pg with a desorption efficiency of about 81%. Linearity of response was ascertained in the ranges 10–100 ng and 100–1000 ng. Short-term method validation was carried out by intra- and inter-day assays on three amounts for each reference calibration curve. All results satisfied the pre-defined acceptance criteria. In general, the whole procedure was easily performed and was appropriate for our needs. Breakthrough volume was appropriate for our needs. Breakthrough volume was determined on authentic samples and was about 40–60 L, using a flow rate of 1 L·min−1. The amounts of triethanolamine found in the samples ranged from 150 to 250 ng (about 2.5–4.2 μg·m−3).  相似文献   

4.
A simple high-performance liquid chromatographic method was developed for determining five major components of teicoplanin, designated A2–1, A2–2, A2–3, A2–4 and A2–5, in human plasma. Using piperacillin sodium as internal standard, teicoplanin in plasma samples was extracted by coextractive cleanup procedure. The extracts were injected into a Nova-Pak C18 column maintained at ambient temperature. The mobile phase consisted of acetonitrile–0.1% trifluoroacetic acid (27:73, pH = 2.2), at a flow rate of 1.0 mL min−1. The analytes were detected at the UV wavelength of 218 nm. The method was found to be linear over the concentration range of 2.5–50 mg L−1 for teicoplanin (r = 0.9993 ± 0.0038), which covered the clinically expected trough plasma levels. The percentage error of the analytical method was below 9%. The intra- and inter-day reproducibility was adequate with coefficients of variation less than 7%. The chromatographic running time was 11 min. Thus, the method can be effectively applied to measure teicoplanin concentrations in clinical samples.  相似文献   

5.
A novel method combining matrix solid phase dispersion (MSPD) with Soxhlet simultaneous extraction clean-up (SSEC) was developed. Being a single-step extraction and clean-up procedure, it could be used instead of multistep solvent extraction and Florisol column clean-up. It not only reduces sample contamination during the procedure, but it also decreases the amount of organic solvent needed. The retention times of standards were used to qualitatively assess the method, and the external standard method was used to quantitatively assess it. Residues of organochlorine pesticides (OCP) in tobaccos were determined by gas chromatography–electron capture detection (GC–ECD), and their identities were confirmed by the standard addition method (SAM). The performance of the method was evaluated and validated: the detection limit was 0.01–0.02 μg g−1, relative standard deviations were 5–26%, and recoveries were 72–99% at fortification levels of 0.10, 1.00 and 10.0 μg g−1. The analytical characteristics of MSPD–SSEC compared very favorably with the results from the classical multistep solvent extraction and Florisol column clean-up method.  相似文献   

6.
A method was developed for the fast separation of a myoglobin digest using a monolithic RP 18 silica capillary column of 100 μm I.D. The results were compared with those obtained with a particulate RP 18 silica capillary column of 100 μm I.D. at a flow-rate between 0.6 and 1.2 μl/min. The digest was analyzed at the monolithic column at a flow-rate up to 2.8 μl/min. This high flow-rate could not be applied to the particulate column due to the high back-pressure. When the starting composition of the gradient was changed from 0 to 20% and a gradient steepness of 16%/min was used, the analysis time was less than 4 min. A positive Mascot identification score of 115 was achieved for the MS–MS data. When a lower gradient steepness was employed, the chromatographic resolution and the peak capacity did not increase for most compounds. The intraday repeatability for the retention time of the monolithic column was better than 1.5% at 2.8 μl/min and even less than 0.5% using a flow-rate of 0.6 or 1.0 μl/min. For the particulate column, it was between 0.5 and 1.4% for a flow-rate of 0.6 μl/min, probably due to the high column back-pressure. The interday reproducibility for the retention time of the monolithic column was less than 0.9% using a flow-rate of 1.0 μl/min.  相似文献   

7.
A rapid extraction procedure has been developed for speciation of arsenic in chicken tissue. Water, methanol–water (1:1), and methanol–chloroform (1:1) were tested as extraction media. Individual use of an ultrasonic bath, a microwave oven, or an ultrasonic probe was not sufficient for quantitative recovery of As(III), dimethylarsinate, monomethylarsonate, As(V), and arsenobetaine in spiked samples of chicken tissue. A new extraction procedure using a methanol–water mixture and a microwave oven then an ultrasonic probe enabled extraction of the arsenic species in 7 min with efficiencies ranging from 80 to 100%. HPLC–UV–HG–AFS was used for the determinations. The extraction procedure was 100% efficient when applied to real samples of chicken tissue. AsB (48±5 μg As kg −1) and one containing-arsenic feed additive, Nitarsone (227±5 μg As kg −1) were detected.  相似文献   

8.
A new high-performance liquid chromatography assay was developed for the determination of minocycline in plasma and brain. A solid–liquid extraction procedure was coupled with a reversed-phase HPLC system. The system requires a mobile phase consisting of acetonitrile:water:perchloric acid (26:74:0.25, v/v/v) adjusted to pH 2.5 with 5 M sodium hydroxide for elution through a RP8 column (250 × 3.0 mm, i.d.) with UV detection set at 350 nm. The method proved to be accurate, precise (RSD < 20%) and linear between 0.15–20 μg mL−1 in plasma and 1–20 μg mg−1 in brain. The method was successfully applied to a blood-brain barrier minocycline transport study.  相似文献   

9.
A simple, rapid, and sensitive high-performance liquid chromatographic method for estimation of efavirenz in human plasma has been developed and validated. Chromatography was performed with C18 analytical column and 50:50 acetonitrile–phosphate buffer (pH 3.5) as mobile phase. Compounds were monitored by UV detection at 247 nm. The retention time for efavirenz was 6.45 min and that for the internal standard, nelfinavir, was 2.042 min. Response was a linear over the concentration range of 0.1 μg–10 μg mL−1 in human plasma. The method was simple, specific, precise and accurate and was useful for bioequivalence and pharmacokinetic studies of efavirenz.  相似文献   

10.
For the first time, a simple, selective and accurate high-performance liquid chromatography method with ultraviolet detection was developed and validated to quantify simultaneously three structurally related antiepileptic drugs; carbamazepine, oxcarbazepine, and the recently launched eslicarbazepine acetate and their main metabolites, carbamazepine-10,11-epoxide, 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and licarbazepine. The method involves a solid-phase extraction and a reverse-phase C18 column with 5 cm length. The mobile phase consisting of water, methanol, and acetonitrile in the ratio 64:30:6 was selected as the best one and pumped at 1 mL/min at 40 °C. The use of this recent column and an aqueous mobile phase instead of buffers gives several advantages over the method herein developed; namely the fact that the chromatographic analysis takes only 9 min. The method was validated according to the guidelines of the Food and Drug Administration, showing to be accurate (bias within ±12%), precise (coefficient variation <9%), selective and linear (r 2 > 0.997) over the concentration range of 0.05–30 μg/mL for carbamazepine; 0.05–20 μg/mL for oxcarbazepine; 0.15–4 μg/mL for eslicarbazepine acetate; 0.1–30 μg/mL for carbamazepine-10,11-epoxide; 0.1–10 μg/mL for 10,11-trans-dihydroxy-10,11-dihydro-carbamazepine, and 0.1–60 μg/mL for licarbazepine. It was also shown that this method can adequately be used for the therapeutic drug monitoring of the considered antiepileptic drugs, carbamazepine, oxcarbazepine, eslicarazepine acetate, and their metabolites.  相似文献   

11.
A procedure was developed for the preconcentration and determination of aluminium and copper in dialysis concentrates at the ng cm–3 level. The preconcentration was achieved on microcolumns filled with Chelex-100 resin adjusted to a pH of 4.0. Five repetitive cycles of the sample through the column ensured a sufficient contact time for quantitative retention of aluminium and copper ions. The retained ions were eluted with HNO3 (0.5 mol dm–3). Aluminium and copper were determined in the eluate by Zeeman ETAAS using the standard addition technique. The procedure was performed under clean room conditions (class 10,000), The reliability of the results was evaluated by recovery tests, using dialysis concentrates spiked with aluminium and copper. The recoveries obtained ranged from 86 to 106% for aluminium and from 92 to 97% for copper. Using the recommended procedure, the LOD of aluminium and copper in dialysis concentrates (preconcentration factor 2) was found to be 0.5 ng cm–3 and 0.2 ng cm–3, respectively. Received: 19 December 1997 / Revised: 10 March 1998 / Accepted: 28 March 1998  相似文献   

12.
A minicolumn packed with poly(aminophosphonic acid) chelating resin incorporated in an on-line preconcentration system for flame atomic-absorption spectrometry was used to determine ultratrace amounts of lead in mussel samples at μg L–1 level. The preconcentrated lead was eluted with hydrochloric acid and injected directly into the nebulizer for atomization in an air-acetylene flame for measurement. The performance characteristics of the determination of lead were: preconcentration factor 26.8 for 1 min preconcentration time, detection limit (3σ) in the sample digest was 0.25 μg g–1 (dry weight) for a sample volume of 3.5 mL and 0.2 g sample (preconcentration time 1 min), precision (RSD) 2.3% for 25 μg L–1 and 2.0% for 50 μg L–1. The sampling frequency was 45 h–1. The method was highly tolerant of interferences, and the results obtained for the determination of lead in a reference material testify to the applicability of the proposed procedure to the determination of lead at ultratrace level in biological materials such as mussel samples. Received: 1 November 2000 / Revised: 8 January 2001/ Accepted: 11 January 2001  相似文献   

13.
A procedure was developed for the preconcentration and determination of aluminium and copper in dialysis concentrates at the ng cm–3 level. The preconcentration was achieved on microcolumns filled with Chelex-100 resin adjusted to a pH of 4.0. Five repetitive cycles of the sample through the column ensured a sufficient contact time for quantitative retention of aluminium and copper ions. The retained ions were eluted with HNO3 (0.5 mol dm–3). Aluminium and copper were determined in the eluate by Zeeman ETAAS using the standard addition technique. The procedure was performed under clean room conditions (class 10,000), The reliability of the results was evaluated by recovery tests, using dialysis concentrates spiked with aluminium and copper. The recoveries obtained ranged from 86 to 106% for aluminium and from 92 to 97% for copper. Using the recommended procedure, the LOD of aluminium and copper in dialysis concentrates (preconcentration factor 2) was found to be 0.5 ng cm–3 and 0.2 ng cm–3, respectively. Received: 19 December 1997 / Revised: 10 March 1998 / Accepted: 28 March 1998  相似文献   

14.
The first HPLC method for the separation of three paraben preservatives (methyl-, ethyl- and propyl parabens) using a core-shell analytical column is reported in this study. The separation was completed in less than 8 min at a low flow rate of 0.4 mL min−1 and an isocratic mobile phase containing 20% acetonitrile as organic modifier. The backpressure was < 200 bar in all cases, enabling the usage of conventional HPLC equipment. The proposed analytical procedure was validated for linearity (0.5–20 μg L−1), limits of detection (15–43 μg L−1) and quantification (50–142 μg L−1), selectivity, within day (1.3–1.5%) and day-to-day (3.4–4.6%) precision and accuracy. The proposed method has been applied to the determination of the selected paraben preservatives in commercially available hygiene wipes. The mean percent recoveries were found to be in the range of 98.0–98.4%.   相似文献   

15.
A rapid, sensitive, and specific method for quantification of olmesartan, the prodrug of olmesartan medoxomil, in human plasma, using zidovudine as internal standard, is described. Sample preparation involved a simple solid-phase extraction procedure. The extract was analyzed by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry (LC–MS–MS). Chromatography was performed isocratically on a 5 μm C18 analytical column (50 mm × 4.6 mm i.d.) with water–acetonitrile–formic acid 20:80:0.1 (v/v) as mobile phase. The response to olmesartan was a linear function of concentration over the range 4.82–1,928 ng mL−1. The lower limit of quantification in plasma was 4.82 ng mL−1. The method was successfully applied in a bioequivalence study of an olmesartan formulation after administration as a single oral dose.  相似文献   

16.
A methodology for the determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and methamphetamine (MA) in seized tablets using gas chromatography with a flame ionization detector (GC-FID) is described. The chromatographic conditions, i.e. gas flow rates and temperatures for the column, injector and detector were optimized. The optimum chromatographic conditions were as follows: a CP-SIL 24 CB WCOT fused silica capillary column (30 m × 0.32 mm I.D., 0.25 μm film thickness), N2 carrier gas flowing at 2.6 mL/min, injector temperature at 290°C and detector temperature at 300°C. The oven temperature was ramped from 80°C at a rate of 20°C/min to final temperature of 270°C (1 min). All analytes were well separated within 7 min with an analysis time of 10.5 min. Calibration curves were linear over the concentration ranges of 3.125–200 μg/mL for MDMA and 6.25–200 μg/mL for MDA and MA (r > 0.990). The intra- and inter-day precisions for determining all analytes were 2.32–10.38% RSD and 1.15–9.77% RSD, respectively. The intra- and inter-day accuracies ranged from −19.79 to +17.51% DEV and −6.84 to +5.2% DEV, respectively. The lower limits of quantification (LLOQs) were 3.125 μg/mL for MDMA and 6.25 μg/mL for MDA and MA. All analytes were stable at room temperature during 24 h but significant loss occurred after 2-month storage at −20°C. The method was shown to be useful for determining the purity of MDMA in seized tablets.  相似文献   

17.
Summary A procedure has been developed for the determination, in <12 min, of several stimulants (amphetamine, ephedrine, methoxyphenamine, phenylephrine and phenylpropanolamine) in spiked urine samples after direct injection, using a hybrid micellar mobile phase of 0.15 M sodium dodecyl sulfate and 3% pentanol at pH 7, on a C18 column with UV detection. Recoveries were 94–102% and limits of detection 4.5 ng·mL−1 for methoxyphenamine and 0.39 μg·mL−1 for amphetamine, similar to those obtained for aqueous solutions. Linearity reached 0.99 and intermediate precision was <8.4 and 5.3, for the two different concentrations tested.  相似文献   

18.
A novel chemiluminescence(CL) flow system for sulfite is described based on electrostatically immobilized luminol on an anion exchange column. Sulfite is detected by the CL reaction with luminol bleeding from the column by hydrolysis. The calibration graph is linear in the range 3 × 10–7 to 1 × 10–5 mol/L, and the detection limit is 1 × 10–7 mol/L. Interfering metal ions co-existing in sample solutions could be effectively eliminated on-line by an upstream cation exchanger. A complete analysis could be performed in 1 min with a relative standard deviation of less than 5%. The system could be reused for over 50 h and has been applied successfully to the determination of sulfur dioxide in air. Received: 21 October 1997 / Revised: 23 February 1998 / Accepted: 26 February 1998  相似文献   

19.
N. Wu  R. Yee  M. L. Lee 《Chromatographia》2000,53(3-4):197-200
Summary Fast separations of perfluorinated polyethers and polymethylsiloxanes that are composed of 50–80 oligomers were demonstrated in packed capillary column supercritical fluid chromatography (SFC) using a carbon dioxide mobile phase. Separations were accomplished within 10 min using a 13 cm×250 μm i.d. column packed with 2 μm porous octadecyl bonded silica (ODS) particles. Effects of particle diameter of the packing material and pressure programming on separation were investigated, and packed column SFC was compared with open tubular column SFC. Results show that as the particle diameter was decreased from 5 to 3 to 2 μm and the column length was reduced from 85 to 43 to 13 cm, the separation time could be reduced from 70 to 20 to 10 min while still maintaining similar separation (resolution). Short columns packed with small porous particles are very suitable for fast SFC separations of polymers.  相似文献   

20.
A method is proposed for the quantification of hydrazine by reversed-phase chromatography after its derivatization with naphthalene-2,3-dialdehyde. The conditions of derivatization and the chromatography separation on a Zorbax Eclipse XDB-C8 column in the gradient mode are optimized. The derivatization and chromatography analysis take 1 and 16 min, respectively. If fluorimetry detection (λex = 273 nm, λem = 500 nm) is used and the injection volume is 100 μL, the detection limit is 0.05 μg/L. The procedure is applicable to the quantification of hydrazine in natural waters and soil extracts. A simple and rapid procedure is elaborated for the determination of 0.1–50 μg/L hydrazine in natural waters, RSD = 12% (n = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号