首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

2.
Several compounds based on the C(1)-symmetric ligands [N(R)C(Ar)NPh]- [abbreviated as B1 (Ar = C(6)H(4)Me-4) or B2 (Ar = Ph), R = SiMe(3)] are reported. They are the crystalline metal benzamidinates [Li(mu:kappa2-B1)(OEt2)](2) (1), [Al(kappa2-B1)2Me] (2), [Al(kappa2-B1)2X] [X = Cl/Me, 1 : 1 (3)], [Sn(kappa2-B1)2] (4), Zr(kappa2-B1)2Cl2 (5), [Zr(kappa2-B1)3Cl] (6), [Na(mu:kappa2-B1)(tmeda)]2 (7), K[B1] (8), Li(B2)(OEt2) (9) and Zr(kappa2-B1)3Cl (10) and the known benzamidine Z-H2NC(C6H4Me-4) = NPh (11). They were prepared by (i) insertion of the nitrile 4-MeC6H4CN (1, 7, 8, 11) or PhCN (9) into the appropriate M-N(R')Ph [R' = R and M = Li (1, 9), Na (7), K (8)] bond and subsequent hydrolysis for 11 [R' = H and M = Li], or (ii) a ligand transfer reaction using the lithium amidinate 1 and Al(Me)2Cl (2, 3), SnCl2 (4) or ZrCl4 (5, 6), or Li(B2) and ZrCl4 (10). The X-ray structures of 1, 2, 3, 4, 6b (i.e..3PhMe) 7, and 11 are presented. Exploratory polymerisation experiments are described, using 2, 5 or 6 as a procatalyst with methylaluminoxane (MAO) (Al : Zr ca. 500 : 1) as promoter. Thus toluene solutions were exposed to C2H4 under ambient conditions; while 2 was unresponsive, 5 and 6 showed modest activity in the formation of polyethylene.  相似文献   

3.
Huang BH  Yu TL  Huang YL  Ko BT  Lin CC 《Inorganic chemistry》2002,41(11):2987-2994
Factors affecting the coordination mode of an amidato group on aluminum will be presented. The reaction of N-tert-butylalkylacetamide ((t)BuNHCR([double bond]O)) with 1.1 molar equiv of Me(3)Al in refluxing hexane affords a pentacoordinated, dimeric compound [Me(2)Al[eta(2)-(t)BuNC(R)(mu(2)-O)]](2) (3, R = p-(t)Bu-C(6)H(4); 4, R = 2,6-F,F-C(6)H(3); 5, R = Me; 6, R = CF(3); 7, R = p-F(3)C-C(6)H(4)). However, in the presence of 2.2 molar equiv of Me(3)Al, N-tert-butyl-4-tert-butylbenzamide ((t)BuNHC(p-(t)Bu-C(6)H(4))([double bond]O in refluxing hexane gives [Me(2)Al[eta(2)-(t)BuNC(p-(t)Bu-C(6)H(4))(mu(2)-O)]AlMe(3)], 8. In contrast, the reaction of R'NHCR' '([double bond]O) with 1 molar equiv of R(3)Al at room temperature produces tetracoordinated, dimeric, eight-membered ring aluminum compounds [R(2)Al[mu,eta(2)-R'NC(R' ')O]](2) (9, R = Me, R' = 2,6-(i)Pr, (i)()Pr-C(6)H(3), R' ' = Ph; 10, R = Me, R' = (i)Bu, R' ' = Ph; 11, R = Et, R' = Bn, R' ' = Ph; 12, R = Me, R' = Ph, R' ' = CF(3); 13, R = Me, R' = Bn, R' ' = CF(3)). On the other hand, 4'-chlorobenzanilide ((p-Cl-C(6)H(4))NHCPh([double bond]O)) reacts with R(3)Al to produce trimeric, twelve-membered ring aluminum compounds [R(2)Al[mu, eta(2)-(p-Cl-C(6)H(4))NC(Ph)O]](3) (14, R = Me; 15, R = Et). Furthermore, the reaction of 2'-methoxybenzanilide with 1 molar equiv of Me(3)Al in hexane yields a dinuclear aluminum complex [Me(2)Al(o-OMe-Ph)NC(Ph)(O)AlMe(3)], 16.  相似文献   

4.
In aqueous media alpha-keto amides 4-YC6H4OCH2COCON(R)CH(R')CH3 (5a, R = Et, R' = H; 5b, R = iPr, R' = Me) with para-substituted phenolic substituents (Y = CN, CF3, H) undergo photocleavage and release of 4-YC6H4OH with formation of 5-methyleneoxazolidin-4-ones 7a,b. For both 5a,b quantum yields range from 0.2 to 0.3. The proposed mechanism involves transfer of hydrogen from an N-alkyl group to the keto oxygen to produce zwitterionic intermediates 8a-c that eliminate the para-substituted phenolate leaving groups. The resultant imminium ions H2C=C(OH)CON+(R)=C(R')CH3 9a,b cyclize intramolecularly to give 7a,b. The quantum yields for photoelimination decrease in CH3CN, CH2Cl2, or C6H6 due to competing cyclization of 8a,b to give oxazolidin-4-one products which retain the leaving group 4-YC6H4O- (Y = H, CN). A greater tendency to undergo cyclization in nonaqueous media is observed for the N,N-diethyl amides 5a than the N,N-diisopropyl amides 5b. With para electron releasing groups Y = CH3 and OCH3 quantum yields for photoelimination significantly decrease and 1,3-photorearrangment of the phenolic group is observed. The 1,3-rearrangement involves excited state ArO-C bond homolysis to give para-substituted phenoxyl radicals, which can be observed directly in laser flash photolysis experiments.  相似文献   

5.
The dithiosalicylidenediamine Ni II complexes [Ni(L)] (R=tBu, R'=CH2C(CH3)2CH2 1, R'=C6H4 2; R=H, R'=CH2C(CH3)2CH2 3, R'=C6H4 4) have been prepared by transmetallation of the tetrahedral complexes [Zn(L)] (R=tBu, R'=CH2C(CH3)2CH2 7, R'=C6H4 8; R=H, R'=CH2C(CH3)2CH2 9, R'=C6H4 10) formed by condensation of 2,4-di-R-thiosalicylaldehyde with diamines H2N-R'-NH2 in the presence of Zn II salts. The diamagnetic mononuclear complexes [Ni(L)] show a distorted square-planar N2S2 coordination environment and have been characterized by 1H- and 13C NMR and UV/Vis spectroscopies and by single-crystal X-ray crystallography. Cyclic voltammetry and coulombic measurements have established that complexes 1 and 2, incorporating tBu functionalities on the thiophenolate ligands, undergo reversible one-electron oxidation processes, whereas the analogous redox processes for complexes 3 and 4 are not reversible. The one-electron oxidized species, 1+ and 2+, can be generated quantitatively either electrochemically or chemically with 70 % HClO4. EPR and UV/Vis spectroscopic studies and supporting DFT calculations suggest that the SOMOs of 1+ and 2+ possess thiyl radical character, whereas those of 1(py)2 + and 2(py)2 + possess formal Ni III centers. Species 2+ dimerizes at low temperature, and an X-ray crystallographic determination of the dimer [(2)2](ClO4)2.2 CH2Cl2 confirms that this dimerization involves the formation of a S-S bond (S...S=2.202(5) A).  相似文献   

6.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

7.
The consecutive syntheses of imidazoles 1-(4-X-C(6)H(4))-4,5-R(2)-(c)C(3)HN(2) (3a, X = Br, R = H; 3b, X = I, R = Me; 3c, X = H, R = Me; 5, X = Fc, R = H; 7, X = C≡CFc, R = H; 9, X = C(6)H(5), R = Me; Fc = Fe(η(5)-C(5)H(4))(η(5)-C(5)H(5))), phosphino imidazoles 1-(4-X-C(6)H(4))-2-PR'(2)-4,5-R(2)-(c)C(3)N(2) (11a-k; X = Br, I, Fc, FcC≡C, Ph; R = H, Me; R' = Ph, (c)C(6)H(11), (c)C(4)H(3)O), imidazolium salts [1-(4-X-C(6)H(4))-3-R'-4,5-R(2)-(c)C(3)HN(2)]I (16a; X = Br, R = H, R' = n-Bu; 16b, X = Br, R = H, R' = n-C(8)H(17); 16c, X = I, R = Me, R' = n-C(8)H(17), 16d, X = H, R = Me, R' = n-C(8)H(17)) and phosphino imidazolium salts [1-C(6)H(5)-2-PR'(2)-3-n-C(8)H(17)-4,5-Me(2)-(c)C(3)N(2)]PF(6) (17a, R' = C(6)H(5); 17b, R' = (c)C(6)H(11)) or [1-(4-P(C(6)H(5))(2)-C(6)H(4))-3-n-C(8)H(17)-4,5-Me(2)-(c)C(3)HN(2)]PF(6), (20) and their selenium derivatives 1-(4-X-C(6)H(4))-2-P([double bond, length as m-dash]Se)R'(2)-4,5-R(2)-(c)C(3)N(2) (11a-Se-f-Se; X = Br, I; R = H, Me; R' = C(6)H(5), (c)C(6)H(11), (c)C(4)H(3)O) are reported. The structures of 11a-Se and [(1-(4-Br-C(6)H(4))-(c)C(3)H(2)N(2)-3-n-Bu)(2)PdI(2)] (19) in the solid state were determined. Cyclovoltammetric measurements were performed with the ferrocenyl-containing molecules 5 and 7 showing reversible redox events at E(0) = 0.108 V (ΔE(p) = 0.114 V) (5) and E(0) = 0.183 V (ΔE(p) = 0.102 V) (7) indicating that 7 is more difficult to oxidise. Imidazole oxidation does not occur up to 1.3 V in dichloromethane using [(n-Bu)(4)N][B(C(6)F(5))(4)] as supporting electrolyte, whereas an irreversible reduction is observed between -1.2 - -1.5 V. The phosphino imidazoles 11a-k and the imidazolium salts 17a,b and 20, respectively, were applied in the Suzuki C-C cross-coupling of 2-bromo toluene with phenylboronic acid applying [Pd(OAc)(2)] as palladium source. Depending on the electronic character of 11a-k, 17a,b and 20 the catalytic performance of the in situ generated catalytic active species can be predicted. As assumed, more electron-rich phosphines with their higher donor capability show higher activity and productivity. Additionally, 11e was applied in the coupling of 4-chloro toluene with phenylboronic acid showing an excellent catalytic performance when compared to catalysts used by Fu, Beller and Buchwald. Furthermore, 11e is eligible for the synthesis of sterically hindered biaryls under mild reaction conditions. C-C Coupling reactions with the phosphino imidazolium salts 17b and 20 in ionic liquids [BMIM][PF(6)] and [BDMIM][BF(4)] were performed, showing less activity than in common organic solvents.  相似文献   

8.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

9.
A new class of luminescent cyclometalated alkynylgold(III) complexes, [Au(RC=N(R')=CR)(CCR' ')], i.e., [Au(C=N=C)(C triple bond CR')] (HC=N=CH = 2,6-diphenylpyridine) R' ' = C6H5 1, C6H4-Cl-p 2, C6H4-NO2-p 3, C6H4-OCH3-p 4, C6H4-NH2-p 5, C6H4-C6H13-p 6, C6H13 7, [Au(tBuC=N=CtBu)(C triple bond CC6H5)] 8 (HtBuC=N=CtBuH = 2,6-bis(4-tert-butylphenyl)pyridine), and [Au(C=NTol=C)(CCC6H4-C6H13-p)] 9 (HC=NTol=CH = 2,6-diphenyl-4-p-tolylpyridine), have been synthesized and characterized. The X-ray crystal structures of most of the complexes have also been determined. Electrochemical studies show that, in general, the first oxidation wave is an alkynyl ligand-centered oxidation, while the first reduction couple is ascribed to a ligand-centered reduction of the cyclometalated ligand with the exception of 3 in which the first reduction couple is assigned as an alkynyl ligand-centered reduction. Their electronic absorption and luminescence behaviors have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the pi-pi* intraligand (IL) transition of the cyclometalated RC=N(R')=CR ligand with some mixing of a [pi(C triple bond CR') --> pi*(RC=N(R')=CR)] ligand-to-ligand charge transfer (LLCT) character. The low-energy emission bands of all the complexes, with the exception of 5, are ascribed to origins mainly derived from the pi-pi* IL transition of the cyclometalated RC=N(R')=CR ligand. In the case of 5 that contains an electron-rich amino substituent on the alkynyl ligand, the low-energy emission band was found to show an obvious shift to the red. A change in the origin of emission is evident, and the emission of 5 is tentatively ascribed to a [pi(CCC6H4NH2) --> pi*(C=N=C)] LLCT excited-state origin. DFT and TDDFT computational studies have been performed to verify and elucidate the results of the electrochemical and photophysical studies.  相似文献   

10.
In combination with EtAlCl(2) (Mo : Al = 1 : 15) the imido complexes [MoCl(2)(NR)(NR')(dme)] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (1); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (3); R = R' = Bu(t) (4); dme = 1,2-dimethoxyethane) and [Mo(NHBu(t))(2)(NR)(2)] (R = 2,6-Pr(i)(2)-C(6)H(3) (5); R = Bu(t) (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl(2)(NPh)(2)(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1-4 in combination with MeAlCl(2) (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl(2) (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl(2) affords [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. Treatment of 6 with RAlCl(2) (2 equiv.) (R = Me, Et) yields [Mo({μ-N-Bu(t)}AlCl(2))(2)] (7) in both cases. Imido derivatives 1 and 3 react with Me(3)Al and MeAlCl(2) to form the bimetallic complexes [MoMe(2)(N{R}AlMe(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (8); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (10)) and [MoMe(2)(N{R}AlCl(2){μ-Cl})(NR')] (R = R' = 2,6-Pr(i)(2)-C(6)H(3) (9); R = 2,6-Pr(i)(2)-C(6)H(3), R' = Bu(t) (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe(3) affords the adducts [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)(L)] (L = thf (12); L = PMe(3) (13)), while reaction with NEt(3) (5 equiv.) yields [MoMe(2)(N-2,6-Pr(i)(2)-C(6)H(3))(2)]. The molecular structures of complexes 5, 9 and 11 have been determined.  相似文献   

11.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

12.
Reactions of Ph(3)SnOH or Ph3SnCl with aryl arsonic acids RAsO3H2, where R=C6H5 (1), 2-NH2C6H4 (2), 4-NH2C6H4 (3), 2-NO2C6H4 (4), 3-NO2C6H4 (5), 4-NO2C6H4 (6), 3-NO2-4-OHC6H3 (7), 2-ClC6H4 (8) and 2,4-Cl2C6H3 (9), gave 18 Sn-O cluster compounds. These compounds can be classified into four types: type A: [{(PhSn)3(RAsO3)3(mu3-O)(OH)(R'O)2}2Sn] (R=C6H5, 2-NH2C6H4, 4-NH2C6H4, 2-NO2C6H4, 3-NO2C6H4, 2-ClC6H4, 2,4-Cl2C6H3, and 3-NO2-4-OHC6H3; R'=Me or Et); type B: [{(PhSn)3(RAsO3)(2)(RAsO3H)(mu3-O)(R'O)2}2] (R=4-NO2C6H4, R'=Me); type C: [{(PhSn)3(RAsO3)3(mu3-O)(R'O)3}2Sn] (R=2,4-Cl2C6H3, R'=Me); type D: [{Sn3Cl3(mu3-O)(R'O)3}(2)(RAsO3)4] (R=2-NO2C6H4 and 4-NO2-C6H4; R'=Me or Et). Structures of types A and B contain [Sn3(mu3-O)(mu2-OR')2] building blocks, while in types C and D the stannoxane cores are built from two [Sn3(mu3-O)(mu2-OR')3] building blocks. The reactions proceeded with partial or complete dearylation of the triphenyltin precursor. These various structural forms are realized by subtle changes in the nature of the organotin precursors and aryl arsonic acids. The syntheses, structures, and structural interrelationship of these organostannoxanes are discussed.  相似文献   

13.
The thermally stable silylene Si[(NCH2But)2C6H4-1,2] 1 undergoes oxidative addition reactions with the lithium amides LiNRR'(R = SiMe3, R' = But; R = SiMe3, R' = C6H3Me2-2,6; R = R' = Me or R = R' = Pri) to afford the new lithium amides Li(THF)2[N(R)Si(SiMe3){(NCH2But)2C6H4-1,2}][R = But2 or R = C6H3Me2-2,6 (3a)] or the new tris(amino)functionalised silyllithiums Li(THF)x[Si{(NCH2But)2C6H4-1,2}NRR'][R = SiMe3, R' = C6H3Me2-2,6, x = 2 (3); R = R'= Me, x = 3 (4) or R = R' = Pri, x = 3 (5)]. Compounds 4 and 5 are stable at ambient temperature but compound 3 is thermally labile and converts into 3a upon heating. The pathway for the formation of 2 and 3 is discussed and the X-ray structures of 2-5 are presented.  相似文献   

14.
Fischer carbene complexes of the group VII transition metals (Mn and Re) containing at least two or three different transition metal substituents, all in electronic contact with the carbene carbon atom, were synthesized. The structural features and their relevance to bonding in the carbene multimetal compounds were investigated, as they represent indicators of possible reactivity sites in polymetallic carbene assemblies. For complexes of the type [ML(x){C(OR)R'}] (ML(x) = MnCp(CO)(2) or Re(2)(CO)(9)), ferrocenyl (Fc) was chosen as the R' substituent, while the OR substituent was systematically varied between an ethoxy or a titanoxy group, to yield the complexes 1a (ML(x) = MnCp(CO)(2), R = Et, R' = Fc), 2a (ML(x) = MnCp(CO)(2), R = TiCp(2)Cl, R' = Fc), 3a (ML(x) = Re(2)(CO)(9), R = Et, R' = Fc), and 4a (ML(x) = Re(2)(CO)(9), R = TiCp(2)Cl, R' = Fc). Direct lithiation of the ferrocene with n-BuLi/TMEDA at elevated temperatures, followed by the Fischer method of carbene preparation, resulted in formation of the novel biscarbene complexes with bridging ferrocen-1,1'-diyl (Fc') substituents [{π-Fe(C(5)H(4))(2)-C,C'}{C(OEt)ML(x)}(2)] (1b, ML(x) = MnCp(CO)(2); 3b, ML(x) = Re(2)(CO)(9)) or the unusual bimetallacyclic bridged biscarbene complexes [{π-TiCp(2)O(2)-O,O'}{π-Fe(C(5)H(4))(2)-C,C'}{CML(x)}(2)] (2b, ML(x) = MnCp(CO)(2); 4b, ML(x) = Re(2)(CO)(9)). The target compounds that were isolated displayed a variety of different geometric isomers and conformations. The greater reactivity of the binary dirhenium acylates in solution, compared to that of the cyclopentadienyl manganese acylate, resulted in a complex reaction mixture. Although the stabilization of hydroxycarbene or hydrido-acyl intermediates of dirhenium carbonyls could not be achieved, their existence in solution was confirmed by the isolation of [(π-H)(2)-(Re(CO)(4){C(O)Fc})(2)] (8), the unique dichloro-bridged biscarbene complex fac-[(π-Cl)(2)-(Re(CO)(3){C(OEt)Fc})(2)] (6), the known hydrido complex [Re(3)(CO)(14)H] (5), the acyl complex [Re(CO)(5){C(O)Fc}] (7), and the aldehyde-functionalized eq-[Re(2)(CO)(9){C(OTiCp(2)Cl)(Fc'CHO)}] (9).  相似文献   

15.
Reactions of the tin precursors, R2Sn(OMe)OSO2Me (R=n-Pr, n-Bu), with an equimolar quantity of 2-quinoline/4-methoxy-2-quinoline/1-isoquinoline carboxylic acid in acetonitrile proceed under mild conditions (rt,12-15 h) via selective Sn-OMe bond cleavage to afford the corresponding mixed-ligand diorganotin derivatives [R2Sn(O2CR')OSO2Me]2 [R'=C9H6N-2, R=n-Pr (1), n-Bu (2); R'=4-OMe-C9H5N-2, R=n-Pr (3), n-Bu (4); R'=C9H6N-1, R=n-Pr (5), n-Bu (6)]. These have been characterized by FAB mass, IR, and multinuclear (1H, 13C, 119Sn) NMR spectral data and X-ray crystallography (for 4 and 6). The molecular structure of 4 (C20H29NO6SSn, monoclinic, P2(1)/n, a=14.1(13) A, b=16.7(18) A, c=20.3(19) A, beta=107(4) degrees, Z=8) comprises distorted octahedral geometry around each tin atom by virtue of weakly bridging methanesulfonate [Sn(1A)-O(3B)=3.010, Sn(1B)-O(3A)=2.984 A] and (N,O) chelation of the carboxylate ligands. The spectral data of 1-4 suggest a similar structural motif in solution. The molecular structure of 6 (C38H53N2O10S2Sn2, monoclinic, P2(1)/c, a=11.339(2) A, b=14.806(3) A, c=24.929(5) A, beta=100.537(3) degrees, Z=4) reveals varying bonding preferences with monomeric units being held together by a bridging methanesulfonate [Sn(2)-O(5)=2.312(2) A] and a carboxylate group bonded to Sn(1) and Sn(2) atoms, respectively. Slow hydrolysis of compound 2 derived from 2-quinoline carboxylic acid in moist CH3CN affords the asymmetric distannoxane, [Bu2Sn(O2CC9H6N-2)-O-Sn(OSO2Me)Bu2]2 (7) (C27H45NO6SSn2, monoclinic, C2/c, a=21.152(3) A, b=13.307(2) A, c=26.060(4) A, beta=110.02(10) degrees, Z=8) featuring ladder type structural motif by virtue of unique mu2-coordination of covalently bonded oxygen atoms [O(6), O(6)#1] of the methanesulfonate groups.  相似文献   

16.
本文研究了苯基锂和对、间、邻甲苯基锂及对、邻甲氧苯基锂与6,6-二烷基富烯环外双键加成反应的立体效应。在室温下于乙醚溶剂中,6,6-二烷基富烯同上述芳基锂反应,形成取代环戊二烯基锂,经水解给出含或不含手性碳的叔烷基环戊二烯。  相似文献   

17.
The neopentylidene-neopentyl complex (PNP)Ti=CH(t)Bu(CH2(t)Bu) (2; PNP(-) = N[2-P(CHMe2)(2-)4-methylphenyl]2), prepared from the precursor (PNP)Ti[triple bond]CH(t)Bu(OTf) (1) and LiCH2(t)Bu, extrudes neopentane in neat benzene under mild conditions (25 degrees C) to generate the transient titanium alkylidyne, (PNP)Ti[triple bond]C(t)Bu (A), which subsequently undergoes 1,2-CH bond addition of benzene across the Ti[triple bond]C linkage to generate (PNP)Ti=CH(t)Bu(C6H5) (3). Kinetic, mechanistic, and theoretical studies suggest the C-H activation process to obey pseudo-first-order in titanium, the alpha-hydrogen abstraction to be the rate-determining step (KIE for 2/2-d(3) conversion to 3/3-d(3) = 3.9(5) at 40 degrees C) with activation parameters DeltaH = 24(7) kcal/mol and DeltaS = -2(3) cal/mol.K, and the post-rate-determining step to be C-H bond activation of benzene (primary KIE = 1.03(7) at 25 degrees C for the intermolecular C-H activation reaction in C6H6 vs C6D6). A KIE of 1.33(3) at 25 degrees C arose when the intramolecular C-H activation reaction was monitored with 1,3,5-C6H3D3. For the activation of aromatic C-H bonds, however, the formation of the sigma-complex becomes rate-determining via a hypothetical intermediate (PNP)Ti[triple bond]C(t)Bu(C6H5), and C-H bond rupture is promoted in a heterolytic fashion by applying standard Lewis acid/base chemistry. Thermolysis of 3 in C6D6 at 95 degrees C over 48 h generates 3-d(6), thereby implying that 3 can slowly equilibrate with A under elevated temperatures with k = 1.2(2) x 10-5 s(-1), and with activation parameters DeltaH = 31(16) kcal/mol and DeltaS = 3(9) cal/mol x K. At 95 degrees C for one week, the EIE for the 2 --> 3 reaction in 1,3,5-C6H3D3 was found to be 1.36(7). When 1 is alkylated with LiCH2SiMe3 and KCH2Ph, the complexes (PNP)Ti=CHtBu(CH2SiMe3) (4) and (PNP)Ti=CHtBu(CH2Ph) (6) are formed, respectively, along with their corresponding tautomers (PNP)Ti=CHSiMe3(CH2tBu) (5) and (PNP)Ti=CHPh(CH2tBu) (7). By means of similar alkylations of (PNP)Ti=CHSiMe3(OTf) (8), the degenerate complex (PNP)Ti=CHSiMe3(CH2SiMe3) (9) or the non-degenerate alkylidene-alkyl complex (PNP)Ti=CHPh(CH2SiMe3) (11) can also be obtained, the latter of which results from a tautomerization process. Compounds 4/5 and 9, or 6/7 and 11, also activate benzene to afford (PNP)Ti=CHR(C6H5) (R = SiMe3 (10), Ph (12)). Substrates such as FC6H5, 1,2-F2C6H4, and 1,4-F2C6H4 react at the aryl C-H bond with intermediate A, in some cases regioselectively, to form the neopentylidene-aryl derivatives (PNP)Ti=CHtBu(aryl). Intermediate A can also perform stepwise alkylidene-alkyl metatheses with 1,3,5-Me3C6H3, SiMe4, 1,2-bis(trimethylsilyl)alkyne, and bis(trimethylsilyl)ether to afford the titanium alkylidene-alkyls (PNP)Ti=CHR(R') (R = 3,5-Me2C6H2, R' = CH2-3,5-Me2C6H2; R = SiMe3, R' = CH2SiMe3; R = SiMe2CCSiMe3, R' = CH2SiMe2CCSiMe3; R = SiMe2OSiMe3, R' = CH2SiMe2OSiMe3).  相似文献   

18.
Free nitriles NCCH2R (1a R = CO2Me, 1b R = SO2Ph, and 1c R = COPh) with an acidic alpha-methylene react with acyclic nitrones -O+N(Me)=C(H)R' (2a R' = 4-MeC6H4 and 2b R' = 2,4,6-Me3C6H2), in refluxing CH2Cl2, to afford stereoselectively the E-olefins (NC)(R)C=C(H)R' (3a-3c and 3a'-3c'), whereas, when coordinated at the platinum(II) trans-[PtCl2(NCCH2R)2] complexes (4a R = CO2Me and 4b R = Cl), they undergo cycloaddition to give the (oxadiazoline)-PtII complexes trans-[PtCl2{N=C(CH2R)ON(Me)C(H)R'}2] (R = CO2Me, Cl and R' = 4-MeC6H4, 2,4,6-Me3C6H2) (5a-5d). Upon heating in CH2Cl2, 5a affords the corresponding alkene 3a. The reactions are greatly accelerated when carried out under focused microwave irradiation, particularly in the solid phase (SiO2), without solvent, a substantial increase of the yields being also observed. The compounds were characterized by IR and 1H, 13C, and 195Pt NMR spectroscopies, FAB+-MS, elemental analyses and, in the cases of the alkene (NC)(CO2Me)C=C(H)(4-MeC6H4) 3a and of the oxadiazoline complex trans-[PtCl2{N=C(CH2Cl)ON(Me)C(H)(4-C6H4Me)}2] 5c, also by X-ray diffraction analyses.  相似文献   

19.
Vinylgallium compounds [C(6)H(6-n){(H)C=C(SiR(2) R')-GaR'(2)}(n ] (3, R=Ph, Me; R'=Ph, Me; R'=tBu, Et; n=1, 2) are easily accessible by hydrogallation of the corresponding alkynylbenzene derivatives with H-GaCl(2) and subsequent reaction with alkyllithium derivatives. Treatment of 3 with an excess amount of tert-butyl- or ethyllithium yielded by transmetalation and ortho-deprotonation of the aromatic rings the unprecedented solvent-free oligolithium cluster compounds [{(C(6)H(4)Li)HC=C(SiPh(3))Li}(2)(tBuLi)(2)] (4), [{(C(6)H(4)Li)HC=C(SiPh(2)Me)Li}(4)] (5) and [{(C(6)H(3)Li){HC=C(SiMe(3))Li}(2)}(3)] (6) in moderate yields. Their solid-state structures revealed the presence of unique molecular lithium clusters with 6, 8, or 9 lithium atoms that may be derived from two edge-sharing Li(4) tetrahedra (4), three Li(4) tetrahedra in a chain joined by two common edges (5) or a tricapped trigonal prism of lithium atoms (6).  相似文献   

20.
The insertion chemistry of the hydride complex trans-Mo(dmpe)(2)(H)(NO) (1) (dmpe = bis(dimethylphosphino)ethane) with imines has been investigated. It was found that disubstituted aromatic imines RCH[double bond]NR' (R, R' = Ar) insert into the Mo-H bond of 1, while a series of various mono- and other disubstituted imines do not react. The insertion products trans-Mo(dmpe)(2)(NO)[NR'(CH(2)R)] (R = R' = Ph (2); R = Cp(2)Fe, R' = Ph (3); R = Ph, R' = Cp(2)Fe (4); R = 1-naphthyl, R' = Ph (5)) have been isolated and fully characterized by elemental analysis, IR and NMR spectroscopy, and mass spectrometry. The imine PhCH[double bond]NC(10)H(7) (C(10)H(7) = 1-naphthyl) reacted with 1 establishing an equilibrium to produce the nonisolable complex trans-Mo(dmpe)(2)(NO)[NC(10)H(7)(CH(2)Ph)] (6). The equilibrium constant for this reaction has been derived from VT-NMR measurements, and the Delta H and Delta S values of this reaction were calculated to be -48.8 +/- 0.4 kJ.mol(-1) and -33 +/- 1 J.K(-1).mol(-1) reflecting a mild exothermic process and its associative nature. Single-crystal X-ray diffraction analyses were carried out on 2-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号