首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈东猛 《物理学报》2010,59(9):6399-6404
应用计及五阶近邻的力常数模型,研究了单轴应力下的石墨烯和芳香烃分子三明治型贴层的石墨烯中拉曼谱的G峰劈裂.计算结果表明对称性的降低解除了G峰对应的在Γ点的面内的纵波光学模声子和横波光学模声子能量简并,从而G峰劈裂为G+和G- 两个峰.在单轴应力作用下,C—C键的伸长致使力常数减小,软化了面内的光学模声子,导致两个G峰都红移;芳香烃分子对石墨烯产生的沿分子长短边方向不同的应力作用,使得G峰对应的两支光学模声子的频率一支发生蓝移,而另一支发生红移.这解 关键词: 力常数模型 石墨烯 拉曼G峰劈裂  相似文献   

2.
Because phonons are the main carriers for graphene heat transfer, modifying the dynamic properties of the crystal lattice by isotopes modulates the phonon behavior and alters the thermal properties. Here we demonstrate an artificially controlled texture synthesis of 12C‐graphene/13C‐graphene heterostructures via chemical vapor deposition and an O2 plasma etching. The electrical and thermal properties of the graphene across the heterojunction show that 12C‐graphene and 13C‐ graphene are electronically connected as resistors in series, while the thermal conductivity across the junction is dramatically reduced due to the suppressed phonon propagation, which causes the conductivity across the junction to be lower than that of graphene sheets with randomly mixed isotopes. These findings should help realize novel two‐dimensional graphene thermoelectric devices where phonon modulation controls the electrons and heat transport independently. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
张嵛  刘连庆  焦念东  席宁  王越超  董再励 《物理学报》2012,61(13):137101-137101
采用基于密度泛函理论的非平衡格林函数, 对具有不同缺陷构型的锯齿型石墨烯带(zigzag graphene nanoribbon, ZGNR) 的输运性质进行了理论计算与模拟. 研究表明, 相同数目、 不同构型缺陷结构对ZGNR的导电特性将产生不同的影响. 如A-B构型双空缺对ZGNR电导的影响最为显著, 而A-A构型双空缺对其电导的影响最小. 更为重要的是, 当引入碳环构型缺陷时, ZGNR将被改性, 即由原本的金属性质转变为半导体性质, 为缺陷调控石墨烯导电特性提供了理论依据.  相似文献   

4.
The effect of optical phonons scattering on electronic current has been studied in metallic carbon nanotubes. The current has been calculated self-consistently by total voltage equation and the heat transport equation. The total voltage equation consists of three terms, optical phonons collision term, acoustic phonon scattering term, and contact resistance one. Including LO, A1, and E1(2) phonons in collision term, we can reproduce the experimental I-V curves displaying negative differential conductance. Furthermore, one conclusion is made that the more optical phonons are scattered by electron, the lower current is in metallic carbon nanotubes. By comparing the current under different conditions, we can make another conclusion that there should be nonequilibrium optical phonons under high bias in spite of whether the metallic nanotube is suspended or not. This result agrees well with the others [M. Lazzeri, F. Mauri, Phys. Rev. B 73 (2006) 165419]. Based on these results, we do not only explain the experiment, but also propose to design a heat-controlling electronic transistor with metallic carbon nanotubes as its channel, in which the electronic current can be controlled by optical phonons.  相似文献   

5.
Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). It was shown that, not surprisingly, RCT collisions may be represented as a special case of elastic scattering. Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar+Ar + collisions by making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne+Ne + integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models. Received 16 June 2002 / Received in final form 2nd August 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: vrhovac@phy.bg.ac.yu RID="b" ID="b"e-mail: zoran@phy.bg.ac.yu  相似文献   

6.
The graphene-based materials along with the adsorption of alkali metal ions are suitable for energy conversion and storage applications. Hence in the present work, we have investigated the structural and electronic properties of pristine and defected graphene sheet upon the adsorption of alkali metal ions (Li+, Na+, and K+) using density functional theory (DFT) calculations. The presence of vacancies or vacancy defects enhances the adsorption of alkali ions than the pristine sheet. From the obtained results, it is found that the adsorption energy of Li+ on the vacancies defected graphene sheet is higher (3.05?eV) than the pristine (2.41?eV) and Stone–Wales (2.50?eV) defected sheets. Moreover, the pore radius of the pristine and defected graphene sheets are less affected by metal ions adsorption. The increase in energy gap upon the adsorption of metal ions is found to be high in the vacancy defected graphene than that of other sheets. The metal ions adsorption in the defective vacancy sheets has high charge transfer from metal ions to the graphene sheet. The bonding characteristic between the metal ions and graphene sheet are analysed using QTAIM analysis. The influence of alkali ions on the electronic properties of the graphene sheet is examined from the Total Density of States (TDOS) and Partial Density of States (PDOS).  相似文献   

7.
The effect of absorption of nonequilibrium acoustical phonons on the intensity of recombination of a two-dimensional electron gas in a magnetic field is investigated. The nonequilibrium acoustical phonons are emitted in the relaxation of electrons in a tunnel junction deposited on the back side of a sample with a two-dimensional electronic channel. It is demonstrated that the optical signal showing the intensity of the recombination of nonequilibrium electrons from a photoexcited size-quantization subband can serve as a sensitive detector of acoustical phonons. Because the general heating of two-dimensional carriers and the intersubband transitions stimulated by the absorption of nonequilibrium acoustical phonons lead to effects of different sign, the useful signal can be discriminated unambiguously. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 1, 30–35 (10 January 1999)  相似文献   

8.
Graphene–oxide hybrid structures offer the opportunity to combine the versatile functionalities of oxides with the excellent electronic transport in graphene. Understanding and controlling how the dielectric environment affects the intrinsic properties of graphene is also critical to fundamental studies and technological development of graphene. Here we review our recent effort on understanding the transport properties of graphene interfaced with ferroelectric Pb(Zr,Ti)O3 (PZT) and high-κ HfO2. Graphene field effect devices prepared on high-quality single crystal PZT substrates exhibit up to tenfold increases in mobility compared to SiO2-gated devices. An unusual and robust resistance hysteresis is observed in these samples, which is attributed to the complex surface chemistry of the ferroelectric. Surface polar optical phonons of oxides in graphene transistors play an important role in the device performance. We review their effects on mobility and the high source-drain bias saturation current of graphene, which are crucial for developing graphene-based room temperature high-speed amplifiers. Oxides also introduce scattering sources that limit the low temperature electron mobility in graphene. We present a comprehensive study of the transport and quantum scattering times to differentiate various scattering scenarios and quantitatively evaluate the density and distribution of charged impurities and the effect of dielectric screening. Our results can facilitate the design of multifunctional nano-devices utilizing graphene–oxide hybrid structures.  相似文献   

9.
Mathematical modelling of n+-n-n+ GaAs structures using the macroparticle method and the Monte Carlo procedure for simulating scattering events indicates that at a lattice temperature of 4.2 K ballistic and quasiballistic electron transport can lead to electron plasma instabilities. If the main scattering mechanism is the emission of polar optical phonons, plasma instability leads to UHF current oscillations at frequencies near 460 GHz.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 10–14, December, 1989.  相似文献   

10.
Based on the dielectric continuum phonon model, uniaxialmodel and force balance equation the mobility of two dimensional electrongas in wurtzite AlxGa1-xN/GaN/AlxGa1-xN quantum wells isdiscussed theoretically within the temperature range dominated by opticalphonons. The dependences of the electron mobility on temperature, Al molarfraction and electron sheet density are presented including hydrostaticpressure effect. The built-in electric field is also taken into account. Itis found that under normal pressure the main contribution to the mobility isfrom the scattering of interface optical phonons in narrow (for well widthd < 12 Å) and wide (for d > 117 Å and d > 65 Å for finitelythick barriers and infinitely thick ones, respectively) wells, whereas thatis from the scattering of confined optical phonons in a well with anintermediate width. It is shown that the electron mobility decreases withincreasing Al molar fraction and temperature, whereas increases obviouslywith increasing electron sheet density. The theoretical calculated electronmobility is 978 cm2/V?s which is higher than an available experimentaldata 875 cm2/V?s when x equals to 0.58 at room temperature. Theresults under hydrostatic pressure considering the modification of strainindicate that the mobility increases slightly as hydrostatic pressureincreases from 0 to 10 GPa.  相似文献   

11.
A variational method and a memory function approach are adopted to investigate the electron mobility parallel to the interface for a model AlxGa1-xAs/GaAs heterojunction and its pressure effect by considering optical phonon modes (including both of the bulk longitudinal optical (LO) in the channel side and interface optical (IO) phonons). The influence of a realistic interface heterojunction potential with a finite barrier and conduction band bending are taken into account. The properties of electron mobility versus Al concentration, electronic density and pressure are given and discussed, respectively. The results show that the electron mobility increases with Al concentration and electronic density, whereas decreases with pressure from 0 to 40 kbar obviously. The Al concentration dependent and the electron density dependent contributions to the electron mobility from the scattering of IO phonons under pressure becomes more obvious. The variation of electron mobility with the Al concentration and electron density are dominated by the properties of IO and LO phonons, respectively. The effect of IO phonon modes can not be neglected especially for higher pressure and electronic density.  相似文献   

12.
We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green?s function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications.  相似文献   

13.
By applying nonequilibrium Green?s function formalism in combination with density functional theory, we have investigated the electronic transport properties of dehydrobenzoannulenne molecule attached to different positions of the zigzag graphene nanoribbons (ZGNRs) electrode. The different contact positions are found to drastically turn the transport properties of these systems. The negative differential resistance (NDR) effect can be found when the ZGNRs electrodes are mirror symmetry under the xz midplane, and the mechanism of NDR has been explained. Moreover, parity limitation tunneling effect can be found in a certain symmetry two-probe system and it can completely destroy electron tunneling process. The present findings might be useful for the application of ZGNRs-based molecular devices.  相似文献   

14.
The definition of temperature in non-equilibrium situations is among the most controversial questions in thermodynamics and statistical physics. In this paper, by considering two numerical experiments simulating charge and phonon transport in graphene, two different definitions of local lattice temperature are investigated: one based on the properties of the phonon–phonon collision operator, and the other based on energy Lagrange multipliers. The results indicate that the first one can be interpreted as a measure of how fast the system is trying to approach the local equilibrium, while the second one as the local equilibrium lattice temperature. We also provide the explicit expression of the macroscopic entropy density for the system of phonons, by which we theoretically explain the approach of the system toward equilibrium and characterize the nature of the equilibria, in the spatially homogeneous case.  相似文献   

15.
The paper is devoted to analysis of the electron transport through one-barrier GaAs/AlAs/GaAs heterostructures. The oscillating component of transport characteristics of symmetric one-barrier GaAs/AlAs/GaAs heterostructures with spacers, which is associated with resonance tunneling of electrons via virtual states formed in the spacer region of the structures due to reflection of electrons from the n?-GaAs/n+-GaAs interface and their subsequent interference. It is shown that electrons are predominantly reflected coherently from the boundary of the strongly doped region as in the case of one-dimensional averaged potential of randomly arranged (beginning from this boundary) impurities. It is shown that low-energy virtual resonances are suppressed due to electron scattering as a result of their interaction with longitudinal optical (LO) phonons in the spacer region.  相似文献   

16.
We report results of the Stark broadening calculations for Sr+ and Ba+ resonance lines in ultracold plasmas using semiempirical formulas and numerical computer simulation technique. The simulation results show that strong collisions dominate Stark broadening at very low electron temperatures and weak collision approximation used recently by Vrinceanu et al. cannot be applied in this temperature region. Consequently, the temperature trend of Stark widths and shifts changes from successfully used at elevated temperatures to an increasing trend with temperature, which is characteristic for strong collisions at low temperature.  相似文献   

17.
The polarizabilities of the low lying states of the Mg+ and Ca+ ions are evaluated by diagonalizing the semi-empirical Hamiltonians in a large dimension single electron basis. The quadrupole moment of the metastable 3d state Ca+ is also calculated and is within 1% of a recent experimental value while being 5% smaller than some large ab-initio calculations. In addition, the long range dispersion coefficients for these ions interacting with a number of atoms are given. Oscillator strengths are also given and generally agree with the most sophisticated ab-initio calculations. The polarizabilities and dispersion coefficients can be used to estimate the frequency shifts of the Ca+ 4s ↦ 3d clock transition due to background electric fields and also collisions with a buffer gas.  相似文献   

18.
We have studied the electron transport properties of a disordered graphene sample, where the disorder was intentionally strengthened by Ga+ ion irradiation. The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior, with electron-electron interaction as the dominant dephasing mechanism. The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders. The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low energies, indicating opening of a Coulomb gap due to electron-electron interaction in the disordered graphene sample. Supported by the National Natural Science Foundation of China (Grant Nos. 10774172 and 10874220), and the National Basic Research Program of China from the MOST (Grant No. 2006CB921304)  相似文献   

19.
124Te核1+态和高自旋态能谱特征的微观研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用微观sdIBM-2+2q.p.方案,成功地计算出124Te核的低自旋态和部分高自旋态,特别是较成功地再现了1+1,1+2,3+1,3+2和5+1态.基于该方案推出的能量关系指认:6+1,8+关键词: 能谱特征 拆对与顺排 微观sdIBM-2+2q.p.方案 124Te核')" href="#">124Te核  相似文献   

20.
Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experimentally that transport properties of phonons, i.e. energy dispersion and scattering rates, are substantially different in a quasi-two-dimensional system such as graphene compared to the basal planes in graphite or three-dimensional bulk crystals. The unique nature of two-dimensional phonon transport translates into unusual heat conduction in graphene and related materials. In this review, we outline different theoretical approaches developed for phonon transport in graphene, discuss contributions of the in-plane and cross-plane phonon modes, and provide comparison with available experimental thermal conductivity data. Particular attention is given to analysis of recent results for the phonon thermal conductivity of single-layer graphene and few-layer graphene, and the effects of the strain, defects, and isotopes on phonon transport in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号