首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a combinatorial approach to the quantum permutation algebras, as Hopf images of representations of type π:As(n)→B(H). We discuss several general problems, including the commutativity and cocommutativity ones, the existence of tensor product or free wreath product decompositions, and the Tannakian aspects of the construction. The main motivation comes from the quantum invariants of the complex Hadamard matrices: we show here that, under suitable regularity assumptions, the computations can be performed up to n=6.  相似文献   

2.
We show that a circulant complex Hadamard matrix of order n is equivalent to a relative difference set in the group C 4×C n where the forbidden subgroup is the unique subgroup of order two which is contained in the C 4 component. We obtain non-existence results for these relative difference sets. Our results are sufficient to prove there are no circulant complex Hadamard matrices for many orders.  相似文献   

3.
R. Craigen 《Discrete Mathematics》2008,308(13):2868-2884
We introduce power Hadamard matrices, in order to study the structure of (group) generalized Hadamard matrices, Butson (generalized) Hadamard matrices and other related orthogonal matrices, with which they share certain common characteristics. The new objects turn out to be as interesting, and perhaps as useful, as the objects that motivated them.We develop a basic theory of power Hadamard matrices, explore these relationships, and offer some new insights into old results. For example, we show that all 4×4 Butson Hadamard matrices are equivalent to circulant ones, and how to move between equivalence classes.We provide, among other new things, an infinite family of circulant Butson Hadamard matrices that extends a known class to include one of each positive integer order.Dedication: In 1974 Jennifer Seberry (Wallis) introduced what was then a totally new structure, orthogonal designs, in order to study the existence and construction of Hadamard matrices. They have proved their worth for this purpose, and have also become an object of interest for their own sake and in applications (e.g., [H.J.V. Tarok, A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inf. Theory 45 (1999) 1456-1467. [26]]). Since then many other generalizations of Hadamard matrices have been introduced, including some discussed herein. In the same spirit we introduce a new object showing this kind of promise.Seberry's contributions to this field are not limited to her own work, of which orthogonal designs are but one example—she has mentored many young mathematicians who have expanded her legacy by making their own marks in this field. It is fitting, therefore, that our contribution to this volume is a collaboration between one who has worked in this field for over a decade and an undergraduate student who had just completed his third year of study at the time of the work.  相似文献   

4.
Cocyclic matrices have the form where G is a finite group, C is a finite abelian group and : G × G C is a (two-dimensional) cocycle; that is,
This expression of the cocycle equation for finite groups as a square matrix allows us to link group cohomology, divisible designs with regular automorphism groups and relative difference sets. Let G have order v and C have order w, with w|v. We show that the existence of a G-cocyclic generalised Hadamard matrix GH (w, v/w) with entries in C is equivalent to the existence of a relative ( v, w, v, v/w)-difference set in a central extension E of C by G relative to the central subgroup C and, consequently, is equivalent to the existence of a (square) divisible ( v, w, v, v/w)-design, class regular with respect to C, with a central extension E of C as regular group of automorphisms. This provides a new technique for the construction of semiregular relative difference sets and transversal designs, and generalises several known results.  相似文献   

5.
This article derives from first principles a definition of equivalence for higher‐dimensional Hadamard matrices and thereby a definition of the automorphism group for higher‐dimensional Hadamard matrices. Our procedure is quite general and could be applied to other kinds of designs for which there are no established definitions for equivalence or automorphism. Given a two‐dimensional Hadamard matrix H of order ν, there is a Product Construction which gives an order ν proper n‐dimensional Hadamard matrix P(n)(H). We apply our ideas to the matrices P(n)(H). We prove that there is a constant c > 1 such that any Hadamard matrix H of order ν > 2 gives rise via the Product Construction to cν inequivalent proper three‐dimensional Hadamard matrices of order ν. This corrects an erroneous assertion made in the literature that ”P(n)(H) is equivalent to “P(n)(H′) whenever H is equivalent to H′.” We also show how the automorphism group of P(n)(H) depends on the structure of the automorphism group of H. As an application of the above ideas, we determine the automorphism group of P(n)(Hk) when Hk is a Sylvester Hadamard matrix of order 2k. For ν = 4, we exhibit three distinct families of inequivalent Product Construction matrices P(n)(H) where H is equivalent to H2. These matrices each have large but non‐isomorphic automorphism groups. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 507–544, 2008  相似文献   

6.
Given a field F and integer n≥3, we introduce an invariant sn (F) which is defined by examining the vanishing of subspaces of alternating bilinear forms on 2-dimensional subspaces of vector spaces. This invariant arises when we calculate the largest dimension of a subspace of n?×?n skew-symmetric matrices over F which contains no elements of rank 2. We show how to calculate sn (F) for various families of field F, including finite fields. We also prove the existence of large subgroups of the commutator subgroup of certain p-groups of class 2 which contain no non-identity commutators.  相似文献   

7.
What is the minimum order of a Hadamard matrix that contains an a by b submatrix of all 1's? Newman showed that where c? denotes the smallest order greater than or equal to c for which a Hadamard matrix exists. It follows that if 4 divides both a and b, and if the Hadamard conjecture is true, then . We establish the improved bounds for min {a,b} ≥ 2. The Hadamard conjecture therefore implies that if 4 divides both 2ab and ?a/2? ?b/2?, then (a, b) = 2 · max {?a/2?b, ?b/2?a}. Our lower bound comes from a counting argument, while our upper bound follows from a sub‐multiplicative property of : Improvements in our upper bound occur when suitable conference matrices or Bush‐type Hadamard matrices exist. We conjecture that any (1,?1)‐matrix of size a by b occurs as a submatrix of some Hadamard matrix of order at most . © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

8.
In 1968 Cryer conjectured that the growth factor of an n × n Hadamard matrix is n. In 1988 Day and Peterson proved this only for the Hadamard–Sylvester class. In 1995 Edelman and Mascarenhas proved that the growth factor of a Hadamard matrix of order 12 is 12. In the present paper we demonstrate the pivot structures of a Hadamard matrix of order 16 and prove for the first time that its growth factor is 16. The study is divided in two parts: we calculate pivots from the beginning and pivots from the end of the pivot pattern. For the first part we develop counting techniques based on symbolic manipulation for specifying the existence or non‐existence of specific submatrices inside the first rows of a Hadamard matrix, and so we can calculate values of principal minors. For the second part we exploit sophisticated numerical techniques that facilitate the computations of all possible (n ? j) × (n ? j) minors of Hadamard matrices for various values of j. The pivot patterns are obtained by utilizing appropriately the fact that the pivots appearing after the application of Gaussian elimination on a completely pivoted matrix are given as quotients of principal minors of the matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Let D 2p be a dihedral group of order 2p, where p is an odd integer. Let ZD 2p be the group ring of D 2p over the ring Z of integers. We identify elements of ZD 2p and their matrices of the regular representation of ZD 2p . Recently we characterized the Hadamard matrices of order 28 ([6] and [7]). There are exactly 487 Hadamard matrices of order 28, up to equivalence. In these matrices there exist matrices with some interesting properties. That is, these are constructed by elements of ZD 6. We discuss relation of ZD 2p and Hadamard matrices of order n=8p+4, and give some examples of Hadamard matrices constructed by dihedral groups.  相似文献   

10.
In the stable0–1 sorting problem the task is to sort an array ofn elements with two distinct values such that equal elements retain their relative input order. Recently, Munro, Raman and Salowe gave an algorithm which solves this problem inO(n log*n) time and constant extra space. We show that by a modification of their method the stable0–1 sorting is possible inO(n) time andO(1) extra space. Stable three-way partitioning can be reduced to stable0–1 sorting. This immediately yields a stable minimum space quicksort, which sorts multisets in asymptotically optimal time with high probability.  相似文献   

11.
We prove that the n-dimensional unit hypercube contains an n-dimensional regular simplex of edge length cn, where c > 0 is a constant independent of n. Supported by MEXT Grant-in-Aid for Scientific Research (B) 20340022.  相似文献   

12.
A new lower bound on the number of non‐isomorphic Hadamard symmetric designs of even order is proved. The new bound improves the bound on the number of Hadamard designs of order 2n given in [12] by a factor of 8n ? 1 for every odd n > 1, and for every even n such that 4n ? 1 > 7 is a prime. For orders 8, 10, and 12, the number of non‐isomorphic Hadamard designs is shown to be at least 22,478,260, 1.31 × 1015, and 1027, respectively. For orders 2n = 14, 16, 18 and 20, a lower bound of (4n ? 1)! is proved. It is conjectured that (4n ? 1)! is a lower bound for all orders 2n ≥ 14. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 363‐378, 2001  相似文献   

13.
A recent result of Schmidt has brought Williamson matrices back into the spotlight. In this article, a new algorithm is introduced to search for hard to find Williamson matrices. We find all nonequivalent Williamson matrices of odd order n up to n = 59. It turns out that there are none for n = 35, 47, 53, 59 and it seems that the Turyn class may be the only infinite class of these matrices.   相似文献   

14.
Let n be the order of a Hadamard design, and G any finite group. Then there exists many non-isomorphic Hadamard designs of order 212|G| + 13 n with automorphism group isomorphic to G.This research was supported in part by the National Science Foundation.  相似文献   

15.
We introduce a recursive construction of regular Handamard matrices with row sum 2h for h=±3n. Whenever q=(2h – 1)2 is a prime power, we construct, for every positive integer m, a symmetric designs with parameters (4h2(qm+1 – 1)/(q – 1), (2h2h)qm, (h2h)qm).  相似文献   

16.
Generalized Hadamard matrices are used for the construction of a class of quasi‐residual nonresolvable BIBD's with parameters . The designs are not embeddable as residual designs into symmetric designs if n is even. The construction yields many nonisomorphic designs for every given n ≥ 2, including more than 1017 nonisomorphic 2‐(63,21,10) designs. © 2006 Wiley Periodicals, Inc. J Combin Designs 15: 460–464, 2007  相似文献   

17.
If there is a Hadamard design of order n, then there are at least 28n−16−9log n non-isomorphic Hadamard designs of order 2n. Mathematics Subject Classificaion 2000: 05B05  相似文献   

18.
In this paper, we investigate Hadamard matrices of order 2(p + 1) with an automorphism of odd prime order p. In particular, the classification of such Hadamard matrices for the cases p = 19 and 23 is given. Self‐dual codes related to such Hadamard matrices are also investigated. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 367–380, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10052  相似文献   

19.
All Hadamard 2-(63,31,15) designs invariant under the dihedral group of order 10 are constructed and classified up to isomorphism together with related Hadamard matrices of order 64. Affine 2-(64,16,5) designs can be obtained from Hadamard 2-(63,31,15) designs having line spreads by Rahilly’s construction [A. Rahilly, On the line structure of designs, Discrete Math. 92 (1991) 291-303]. The parameter set 2-(64,16,5) is one of two known sets when there exists several nonisomorphic designs with the same parameters and p-rank as the design obtained from the points and subspaces of a given dimension in affine geometry AG(n,pm) (p a prime). It is established that an affine 2-(64,16,5) design of 2-rank 16 that is associated with a Hadamard 2-(63,31,15) design invariant under the dihedral group of order 10 is either isomorphic to the classical design of the points and hyperplanes in AG(3,4), or is one of the two exceptional designs found by Harada, Lam and Tonchev [M. Harada, C. Lam, V.D. Tonchev, Symmetric (4, 4)-nets and generalized Hadamard matrices over groups of order 4, Designs Codes Cryptogr. 34 (2005) 71-87].  相似文献   

20.
Vsevolod I. Ivanov 《Optimization》2016,65(11):1909-1927
In this paper, we introduce a higher order directional derivative and higher order subdifferential of Hadamard type of a given proper extended real function. We obtain necessary and sufficient optimality conditions of order n (n is a positive integer) for unconstrained problems in terms of them. We do not require any restrictions on the function in our results. In contrast to the most known directional derivatives, our derivative is harmonized with the classical higher order Fréchet directional derivative of the same order in the sense that both of them coincide, provided that the last one exists. A notion of a higher order critical direction is introduced. It is applied in the characterizations of the isolated local minimum of order n. Higher order invex functions are defined. They are the largest class such that the necessary conditions for a local minimum are sufficient for global one. We compare our results with some previous ones. As an application, we improve a result due to V. F. Demyanov, showing that the condition introduced by this author is a complete characterization of isolated local minimizers of order n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号