首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.  相似文献   

2.
Using self-flux method,we have successfully grown the parent phase of the single crystals of CaFeAsF1-x.The X-ray di?raction indicates good crystallinity.In-plane resistivity shows a bad metallic behavior with a sharp drop of resistivity at about T SDW=119K.This anomaly is associated with the possible spin density wave(SDW)order.Interestingly near T SDW,the resistivity exhibits a cusp-like feature,which may be understood as the strong coupling effect between the electrons and the antiferromagnetic(AF)spin fluctuations.A reduction of fluorine or application of a high pressure will suppress the SDW feature and induce superconductivity.Hall effect measurements reveal a positive Hall coefficient below T SDW indicating a dominant role of the hole-like charge carriers in the parent phase.Strong magnetoresistance has been observed below T SDW suggesting multiple conduction channels of the charge carriers.  相似文献   

3.
We analyze antiferromagnetism and superconductivity in novel Fe-based superconductors within the weak-coupling, itinerant model of electron and hole pockets near (0, 0) and (π, π) in the folded Brillouin zone. We discuss the interaction Hamiltonian, the nesting, the RG flow of the couplings at energies above and below the Fermi energy, and the interplay between SDW magnetism, superconductivity and charge orbital order. We argue that SDW antiferromagnetism wins at zero doping but looses to superconductivity upon doping. We show that the most likely symmetry of the superconducting gap is A1g in the folded zone. This gap has no nodes on the Fermi surface but changes sign between hole and electron pockets. We also argue that at weak coupling, this pairing predominantly comes not from spin fluctuation exchange but from a direct pair hopping between hole and electron pockets.  相似文献   

4.
Based on a phenomenological model with competing spin-density-wave (SDW) and extended s-wave superconductivity, the vortex states in Ba(1-x)K(x)Fe2As2 are investigated by solving Bogoliubov-de Gennes equations. Our result for the optimally doped compound without induced SDW is in qualitative agreement with recent scanning tunneling microscopy experiment. We also propose that the main effect of the SDW on the vortex states is to reduce the intensity of the in-gap peak in the local density of states and transfer the spectral weight to form additional peaks outside the gap.  相似文献   

5.
Magnetic ordering is studied in Cr/X (1 ML) layer structures with monatomic layers (ML) of nonmagnetic metals (X = Sn, V, Ag, Au) incorporated into a chromium matrix. The mechanism associated with a redistribution of the charge and spin densities near the Cr/X interface and through which a spin-density wave (SDW) is induced and modified in these systems is analyzed. A semiphenomenological model is considered in detail in terms of which SDW structure near a single planar nonmagnetic defect can be described qualitatively using the Ginzburg-Landau functional. The spatial SDW configuration in a [Cr(t/X(1 ML)] superlattice is calculated, and the dependences of the SDW parameters on the temperature T, type of metal X, and superlattice period t are established. Based on the results of the study, experimental Mössbauer spectroscopy data are interpreted.  相似文献   

6.
First-principles calculations of electronic structure and magnetic properties based on density-functional theory were performed for MnFeP1−xSix (0.44?x?0.60) alloys which are considered as promising magnetocaloric refrigerants. We used the full-potential APW+lo method and treated the random order of P(Si) atoms in the ZrNiAl-type structure in a virtual-crystal approximation. A non-monotonic behavior of the alloy magnetization as a function of x was obtained, in qualitative agreement with experiment, and explained in terms of the spin-polarized densities of states.  相似文献   

7.
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2Si2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2Si2. In YbRh2Si2, superconductivity appears to be suppressed at T???10?mK by AF order (TN?=?70?mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TA slightly above 2?mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at Tc?=?2?mK. Like the pressure – induced QCP in CeRhIn5, the magnetic field – induced one in YbRh2Si2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-T unconventional heavy – fermion superconductors and other families of unconventional superconductors with higher Tcs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.  相似文献   

8.
A mean-field spin-density wave (SDW) analysis of pseudogap in the underdoped cuprates is proposed on the basis of the t-tˊ-U Hubbard model. It is surprised to find that a simple tˊ term will do the trick to introduce the momentum dependence of the energy gap which mimics the pseudogap near (π,0) point at least. It implies that the pseudogap structure near (π,0) is not sensitive to the long-range order and will survive leading to the pseudogap phenomenon in the underdoped metallic phase. On the other hand, in the long-range ordering antiferromagnetic region, the mean-field SDW theory holds and the pseudogap structure predicated by the theory should be observable experimentally. Then one prediction is that the pseudogap would smoothly extrapolate between itinerant antiferromagnetic phase and underdoped metallic phase.  相似文献   

9.
It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-Tc systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green’s functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green’s functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.  相似文献   

10.
A review of the magnetism in the parent compounds of the iron-based superconductors is given based on the transmission Mössbauer spectroscopy of 57Fe and 151Eu. It was found that the 3d magnetism is of the itinerant character with varying admixture of the spin-polarized covalent bonds. For the ‘122’ compounds, a longitudinal spin density wave (SDW) develops. In the case of the EuFe2As2, a divalent europium arranges in an anti-ferromagnetical order at a much lower temperature as compared with the onset of SDW. These two magnetic systems remain almost uncoupled one to another. For the non-stoichiometric Fe1+xTe parent of the ‘11’ family, one has a transversal SDW and magnetic order of the interstitial iron with relatively high and localized magnetic moments. These two systems are strongly coupled one to another. For the ‘grand parent’ of the iron-based superconductors FeAs, one observes two mutually orthogonal phase-related transversal SDW on the iron sites. There are two sets of such spin arrangements due to two crystallographic iron sites. The FeAs exhibits the highest covalency among the compounds studied, but it has still a metallic character.  相似文献   

11.
The Nambu spinor Green's function approach is applied to calculating the density of states (DOS) and superconducting order parameter in normal-metal/insulator/ferromagnet/superconductor (NM/I/FM/SC) junctions. It is found that the s-wave superconductivity and ferromagnetism can coexist near the FM/SC interface, which is induced by proximity effect. On the SC side, the spin-dependent DOS appears both within and without the energy gap. On the FM side, the superconducting order parameter displays a damped oscillation and the DOS exhibits some superconducting behavior. The calculated result for the DOS in FM for “0 state” and “π state” can reproduce recent tunneling spectra in Al/Al2O3/PdNi/Nb tunnel junctions. Received 1st July 2002 Published online 19 November 2002  相似文献   

12.
The electronic structure of graphitic nanoparticles is investigated within a gauge field-theory model. The local and total densities of states (DOS) near the pentagonal defects (disclinations) are calculated for three geometries: sphere, cone, and hyperboloid. It is found that the low-energy electron states have a rather specific dependence on both the energy and the distance from a disclination line. In particular, the low-energy total DOS has a cusp that drops to zero at the Fermi energy for disclinations with the Frank index v<1/2, while a region of a nonzero DOS across the Fermi level is formed for v=1/2. The true zero-mode fermion state is found for the graphitic hyperboloid. The appearance of an enhanced charge density near the Fermi level for nanocones with a 60° opening angle (180° disclination) is predicted.  相似文献   

13.
The electronic and spin structure of quantum-well and interface states, formed in the system, consisting of bilayer of Bi on 1 ML Ag/W(110) was investigated by angle- and spin- resolved photoelectron spectroscopy. It has been shown that interface states are formed in local surface-projected gap of W(110) and are characterized by spin polarization and spin-orbit splitting, corresponding to surface resonances with high density spin-polarized states near Fermi edge.  相似文献   

14.
15.
郁华玲  董正超 《中国物理》2007,16(10):3072-3079
We extend the Blonder, Tinkham and Klapwijk (BTK) theory to the study of the coexistence between ferromagnetism and s-wave superconductivity in ferromagnet/superconductor (F/S) structures. It is found that the ferromagnetism and s-wave superconductivity can coexist near the F/S interface, which is induced by proximity effects. On the F side, the density of states (DOS) exhibits some superconducting-like properties, and it displays a damped oscillation from `0' to `$\piE-mail: hlya7505@yahoo.com.cn/qk/85823A/200710/25696438.htmlproximity effects, `\pi' state, Rashba spin--orbit coupling7210, 74503/3/2007 12:00:00 AMWe extend the Blonder, Tinkham and Klapwijk (BTK) theory to the study of the coexistence between ferromagnetism and s-wave superconductivity in ferromagnet/superconductor (F/S) structures. It is found that the ferromagnetism and s-wave superconductivity can coexist near the F/S interface, which is induced by proximity effects. On the F side, the density of states (DOS) exhibits some superconducting-like properties, and it displays a damped oscillation from `0' to `$\pi$' states with increasing either the thickness of F film or the exchange energy. We also study the influences of the spin-polarized exchange splitting in the F and the spin-degeneracy by Rashba spin--orbit coupling (RSOC) in the two-dimensional electron gas (2DGE) on the proximity effects. It is shown that the case of Rashba spin-degeneracy is very different from that of the spin-polarized exchange splitting.http://cpb.iphy.ac.cn/CN/10.1088/1009-1963/16/10/042https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=1088232007-10-08' states with increasing either the thickness of F film or the exchange energy. We also study the influences of the spin-polarized exchange splitting in the F and the spin-degeneracy by Rashba spin--orbit coupling (RSOC) in the two-dimensional electron gas (2DGE) on the proximity effects. It is shown that the case of Rashba spin-degeneracy is very different from that of the spin-polarized exchange splitting.  相似文献   

16.
A special diagram technique recently proposed for strongly correlated electron systems is used to study the peculiarities of a spin-density wave (SDW) in competition with superconductivity. This method allows formulation of the Dyson equations for the renormalized electron propagators of the co-existing phases of SDW antiferromagnetism and superconductivity. We find the surprising result that triplet superconductivity appears provided that we have the co-existence of singlet superconductivity and SDW antiferromagnetism. A special ansatz, which takes into account the full Green's functions as well as the dynamical structure of the correlations, is used to establish the equations determining the gap functions and order parameters.  相似文献   

17.
The local density of states (LDOS) at the vortex lattice cores in a high- T(c) superconductor is studied by using a self-consistent mean-field theory including interactions for both antiferromagnetism (AF) and d-wave superconductivity (DSC). In a zero-field optimally doped sample the AF order is completely suppressed while DSC prevails. In the mixed state, we show that the local AF-like spin density wave order appears near the vortex core and acts as an effective local magnetic field on electrons via Zeeman coupling. As a result, the LDOS at the core exhibits a double-peak structure near the Fermi level that is in good agreement with recent scanning tunneling microscopy observations.  相似文献   

18.
采用基于密度泛函理论的第一性原理平面波超软赝势法计算了不同浓度Mn掺杂GaN(Ga1-xMnxN,x=0.0625和0.1250)的晶格常数、能带结构和态密度,分析比较了掺杂前后GaN的电子结构和磁性.结果表明:Mn掺入后体系仍为直接带隙半导体,带隙宽度随Mn含量的增加逐步增大.Mn掺杂GaN均使得N2p与Mn3d轨道杂化,产生自旋极化杂质带,自旋向上的能带占据费米面,掺杂后的Ga1-xMnxN表现为半金属铁磁性,适合自旋注入;随着Mn掺杂浓度的增加,体系的半金属性有所增强.  相似文献   

19.
We report the STM study on a single-crystalline sample of FeTe at 7.8 K. FeTe is one of the iron-based superconductor. We measured the resistivity and the magnetization of FeTe. FeTe shows SDW transition at 58 K on these measurements. We study the electronic state of FeTe by using STM/STS for observing FeTe from a microscopic viewpoint. We observed the iron layer and the tellurium layer with atomic resolution. Moreover, we discover the charge stripe structure on STM/STS measurement. We find the charge stripe structure is caused by iron atoms from the analysis. The gap structure of 9 meV was observed in tunneling spectra. This gap size is consistent with the SDW gap which is expected from mean field theory with TN=58 K.  相似文献   

20.
采用基于密度泛函理论的第一性原理平面波超软赝势法计算了不同浓度Mn掺杂GaN(Ga1-xMnxN, x=0.0625和0.1250)的晶格常数、能带结构和态密度,分析比较了掺杂前后GaN的电子结构和磁性。结果表明:Mn掺入后体系仍为直接带隙半导体,带隙宽度随Mn含量的增加逐步增大。Mn掺杂GaN均使得N 2p与Mn 3d轨道杂化,产生自旋极化杂质带,自旋向上的能带占据费米面,掺杂后的Ga1-xMnxN表现为半金属铁磁性,适合自旋注入;随着Mn掺杂浓度的增加,体系的半金属性有所增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号