首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The irreversibility lines (IL) for series of Y1?xCaxBa2Cu3O7?δ (x = 0.025; 0.10 and 0.20) polycrystalline samples with different overdoping were investigated. The irreversibility fields were determined from measurements of third harmonics AC susceptibility as a function of DC field at constant temperature. For the weakly overdoped sample (with x = 0.025) Hirr(77 K) is about 7 T, which is higher than the previously reported for the non-substituted one. The irreversibility line behavior is typical for glass–liquid phase transition and this is confirmed by transport measurements. On increasing the overdoping the irreversibility fields were shifted towards lower temperatures. The behavior of Hirr(T) for the highly overdoped sample (with x = 0.20) is influenced by the surface barrier effect. It is supposed that in highly overdoped specimen the process of phase separation is enhanced and the Fermi clusters grow in size. This leads to a suppression of the bulk pinning and to a domination of the surface barrier effects and flux creep as well. As a confirmation, the obtained quadratic Jc(T) dependences were presented demonstrating the existence of S–N–S type inter-grain joints in the highly overdoped samples.  相似文献   

2.
The stability of various amounts of Ba3Cu3In4O12 (334) or BaTbO3 (BTO) in a sintered YBa2Cu3Oy (YBCO) matrix was examined. Samples with added 334 or BTO exhibited critical temperatures (Tc) above 90 K for up to 20 vol.% addition and improved critical current densities (Jc) under a magnetic field. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis indicated that 334 and BTO did not react with the YBCO matrix under the sintering conditions used. The normalized Jc under a magnetic field of 1 T reached a maximum at 14 vol.% of 334 addition and 20 vol.% BTO addition. YBCO thin films with added BTO showed a gradual decrease in the Tc with increasing BTO content. YBCO films with added 334 showed a constant Tc of 87 K up to a 334 content of 4 vol.%.  相似文献   

3.
The YBCO films with BaSnO3 (BSO) particles were prepared on LAO (0 0 1) substrates by metal organic deposition using trifluoroacetates (TFA-MOD) via introducing SnCl4 powders into the YBCO precursor solution. It was found that with the increase of the SnCl4 contents, the slower decomposition and higher temperature for nucleation during the reaction were requested compared to that of pure YBCO film. The YBCO films with different contents of Sn with dense surface and well c-alignment were obtained under optimized heat treatment, and the BaSnO3 phases were detected by XRD analysis. Litter effect of BSO particles on the Tc and Jc values of YBCO films was found. All YBCO films with BSO particles had Tc values over 90 K and Jc values over 1 MA/cm2. A significant enhancement of Jc was observed for YBCO films with BSO particles compared to that of pure YBCO film by the field dependence of Jc values. The best property was obtained for YBCO film with 6 mol.% Sn at 77 K under magnetic field. The results showed that the Jc value of YBCO film with 6 mol.% Sn was enhanced by a factor of 2 in 2 T, and over a factor of 10 beyond 4 T compared to that of pure YBCO film.  相似文献   

4.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

5.
CuBa2Ca3Cu4O12−y (Cu:1234) high-temperature superconductors (HTS) doped with up to 2% Zn were grown using the high-pressure synthesis technique. Magnetization loops of the samples were measured at various temperatures between 5 and 77.3 K and magnetic fields up to 14 T. Critical current densities Jc of the samples were estimated using the critical state model. The results show that Zn-induced pinning centers increase Jc of Cu:1234 several times, depending on field and temperature. From the experimentally determined field-temperature region in which a higher Zn concentration lead to a higher Jc, we suggest the existence of a cross-over from quite efficient, extended (in the c-axes direction) pinning centers to point-like (inefficient) pinning centers at a certain temperature, depending on field. This effect can be attributed to the fact that, unlike other HTS, in Cu:1234 there is a second critical temperature Tc2 of about 70–80 K (in zero field, and 50–60 K in 15 T), related to the over-doping of pyramidal basal plane (outer CuO2 plane).  相似文献   

6.
Fluctuations on the electrical conductivity of polycrystalline YBa2Cu3O7?δ + xBaZrO3 (x = 1.0, 2.5, 5.0 and 10.0 wt.%) superconductors were investigated from the resistivity vs. temperature data for zero field and 8 T (Tesla) external magnetic fields. Attempts have been made to identify the optimum inclusion of BaZrO3 (BZO) in YBa2Cu3O7?δ (YBCO) superconductors. The phase formation, texture and grain alignments were analyzed by XRD and SEM techniques. Then the effects of superconducting fluctuations on the electrical conductivity of granular composite superconductors were studied for zero field and 8 T external magnetic fields. Though inclusions of BZO sub-micron particles are not expected to influence superconducting order-parameter fluctuation (SCOPF) much, the transition from 2D to 3D of the order parameter in the mean-field region depends on the BZO content in the composites. It has been observed that BZO residing at the grain boundary of YBCO matrix influences the tailing region without having significant change in the mean-field critical temperature. In the present work, attention has been focused mostly in the experimental domain relatively above the Tc. It reveals that, 1 wt.% composite exhibits a better superconducting property in comparison with pure YBCO.  相似文献   

7.
AC susceptibility and DC magnetization measurements were performed for the RPdIn (R=Gd–Er) compounds both in the paramagnetic and in the ordered state. In opposite to GdPdIn, which is a ferromagnet (Tc=102 K), the other samples show a complex ferrimagnetic behavior with the additional transition at Tt<Tc. In the high-temperature phase (for Tt<T<Tc), a ferromagnetic interaction dominates, while in the low-temperature phase (for TTt) antiferromagnetic interactions with the magnetocrystalline anisotropy, especially strong for TbPdIn, come into play. The ordering temperatures are Tc=70, 34, 25 and 12.3 K for Tb-, Dy-, Ho- and ErPdIn respectively, while transition temperatures are Tt=6, 14 and 6 K for Tb-, Dy- and HoPdIn respectively. TbPdIn reveals an additional transition at 27 K connected with the intermediate ferrimagnetic phase. The critical fields for the magnetization process of the low-temperature phase are high (52 and 150 kOe for TbPdIn and 32 kOe for DyPdIn at T=4.2 K) yet these values decrease remarkably with increasing temperature. Results of the study are compared with magnetic and neutron diffraction data hitherto available. We state that irreversibility of the zero-field cooled–field cooled magnetization is not connected with the spin-glass phase claimed elsewhere.  相似文献   

8.
We report synthesis, structural and magnetic (DC and AC) properties of Boron substituted MgCNi3 superconductor. A series of polycrystalline bulk samples Mg1.2C1.6?xBxNi3 (x=0.0, 0.08 and 0.16) is synthesized through standard solid-state reaction route, which are found to crystallize in cubic perovskite structure with space group Pm3m. Rietveld analysis of observed XRD data show that lattice parameters expand from a=3.8106 (4) Å for pure, to 3.8164 (2) Å and 3.8173 (5) Å for 5% and 10% Boron substituted samples respectively. DC magnetization exhibited superconducting transition (Tc) at around 7.3 K for pure sample, and the same decreases slightly with Boron substitution. The lower critical field (Hc1) at 2 K is around 150 Oe for pure sample, which increases slightly with Boron substitution. For pure sample the upper critical field (Hc2) being determined from AC susceptibility measurements is 11.6 kOe and 91.70 kOe with 50% and 90% diamagnetism criteria respectively, which decreases to 5.57 kOe and 42.5 kOe respectively for 10% Boron substituted sample. 10% Boron substitution at Carbon site has decreased both the Hc2 and Tc. On the other hand lower critical field (Hc1) at 2 K is slightly increased from around 150 Oe for pure sample, to 200 Oe for 10% Boron substituted sample. Seemingly, the Carbon site Boron substitution induced disorder though has increased slightly the Hc1 but with simultaneous decrease in superconducting transition temperature (Tc) and upper critical field (Hc2). The high relative proportion of Ni in studied MgCNi3 suggests that magnetic interactions are important and non-oxide perovskite structure make it interesting.  相似文献   

9.
We have studied the effect of negative chemical pressure in the RuGd1.5(Ce0.5?xPrx)Sr2Cu2O10?δ with Pr content of 0.0 ? x ? 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ? x ? 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr3+,4+ and Ce4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the antiferromagnetic and ferromagnetic transition temperatures, which is probably due to the presence of a spin glass region. There exist two magnetic transition temperatures for 0.0 ? x ? 0.2 which respectively change from TM = 155 K to 144 K and from Tirr = 115 K to 70 K. The magnetization versus applied magnetic field isotherms at 77 K and 300 K show that the remanent magnetization and coercivity are lower for samples with higher Pr content.  相似文献   

10.
We have studied the crystallization time dependence of the epitaxial YBCO films (t = 0.8 μm) grown on CeO2-buffered SrTiO3 substrates by fluorine-free metal–organic deposition using uv-lamp irradiation (uv-MOD). As increasing the time (T0) for heat treatment at the reaction temperature (760 °C) from 0 to 90 min, Jc and the YBCO 0 0 l XRD intensity are steeply increased and reach their maximum values at T0 = 10 min. This suggests that the heat treatment required for YBCO crystallization is significantly shortened in uv-MOD compared to conventional all-pyrolytic F-free MOD processes, which consume T0 = 90–150 min for crystallizing 0.4–0.5-μm-thick films. Scanning electron microscope measurement revealed a drastic change in surface morphology between T0 = 8 and 10 min, showing a good correspondence to the Jc and XRD data which suggest that the epitaxial growth reaches the film surface at the very early stage in the heat treatment.  相似文献   

11.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

12.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

13.
We have tried to vary the carriers concentration in Cu0.5Tl0.5Ba2Ca3Cu4?yZnyO12?δ (y = 0, 1, 1.5, 2, 2.5) superconductor with the help of post-annealing experiments carried out in nitrogen, oxygen and air and to investigate its effects on the superconductivity parameters. The zero resistivity critical temperature [Tc(R = 0)], the magnitude of diamagnetism and critical current [Ic(H = 0)] are found to increase in Zn free samples after post-annealing in oxygen and air, while these superconducting properties have been suppressed after post-annealing in nitrogen at 550 °C for 6 h. The post-annealing of Zn-doped samples in air has marginally increased the superconducting properties, while these properties have been suppressed after post-annealing in nitrogen and oxygen. These studies have led us to the definite conclusion that the Zn-doped material has grown with optimum carriers concentration.  相似文献   

14.
Here, we report an overview of the phase-diagram of single-layered and double-layered Fe arsenide superconductors at high magnetic fields. Our systematic magneto-transport measurements of polycrystalline SmFeAsO1-xFx at different doping levels confirm the upward curvature of the upper critical magnetic field Hc2(T) as a function of temperature T defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single-crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single- and double-layered compounds. In all compounds explored by us the zero temperature upper critical field Hc2(0), estimated either through the Ginzburg–Landau or the Werthamer–Helfand–Hohenberg single gap theories, strongly surpasses the weak-coupling Pauli paramagnetic limiting field. This clearly indicates the strong-coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses γ =  (mc/mab)1/2 for carriers moving along the c-axis and the ab-planes, respectively, is relatively modest as compared to the high-Tc cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field Hm(T), separating the vortex-solid from the vortex-liquid phase in the single-layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.  相似文献   

15.
The effect of magnetic Ni and non-magnetic Zn impurities on superconducting transition temperature Tc in RuSr2R(Cu1?x(Ni, Zn)x)2O8 with R = Gd or Eu (Ni- and Zn-substituted Ru1212Gd(Eu)) was extensively studied. It is found that the suppression rate dTc/dx of RuSr2R(Cu1?x(Ni, Zn)x)2O8 is comparable to that of underdoped YBa2(Cu1?x(Ni, Zn)x)3O7?δ. The suppression of superconductivity in Ni-substituted Ru1212Eu samples is more significant than that in Zn-substituted ones, indicative of Ni being a more effective pair-breaker than Zn. In strong contrast, the magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in Ru1212Gd, similar to what was observed in the high-Tc cuprates. These intriguing findings strongly suggest that the impurity-induced local disturbance of the 3d-spin correlation at Cu sites around Ni/Zn is distinctly different between Ru1212Gd and Ru1212Eu.  相似文献   

16.
We report the superconducting properties of the pyrochlore oxide Cd2Re2O7. The bulk superconducting transition temperature Tc is about 1.0 K, and the upper critical field Hc2 determined by the measurement of specific heat under magnetic fields is 0.29 T. The superconducting coherence length is estimated to be 34 nm. Specific heat data measured on single crystals suggest that the superconducting gap of Cd2Re2O7 is nodeless.  相似文献   

17.
The effects of carbon nano-tubes (CNTs) on the crystal structure and superconducting properties of YBa2Cu3O7?δ (Y-123) compound were studied. Samples were synthesized using standard solid-state reaction technique by adding CNT up to 1 wt% and X-ray diffraction data confirm the single phase orthorhombic structure for all the samples. Current–voltage measurements in magnetic fields up to 9 T were used to study the pinning energy UJ and critical current density Jc as a function of magnetic field at fixed temperature. We find that while Tc does not change much with the CNT doping (91–92 K), both UJ and Jc increase systematically up to 0.7 wt% CNT doping in a broad magnetic field ranges between 0.1 and 9 T and Jc in the 0.7 wt% CNT doped sample is at least 10 times larger than that of the pure Y-123. The scanning electron microscope image shows that CNTs are forming an electrical-network between grains. These observations suggest that the CNT addition to the Y-123-compounds improve the electrical connection between superconducting grains to result in the Jc increase.  相似文献   

18.
The paper reports the first measurements of the single crystal elastic constants of the heavy rare earth metal thulium as a function of temperature and magnetic field. The constants were obtained from ultrasonic velocity measurements over a temperature range of 4.2–296 K and in applied magnetic fields of up to 5 T. The elastic constants; C11, C33, C44 and C66=(C11–C12)/2 were determined from the ultrasonic velocities. Anomalies in the elastic constants were observed at 58 K from the c-axis propagated shear wave measurements and at 55 K from the c-axis propagated longitudinal wave measurements. Significant softening of the elastic constants C33 and C44 was observed close to TN. Application of a magnetic field (>2 T) along the c-axis direction induced further softening of the material. Electromagnetic acoustic transducers (EMATs) were also employed in addition to conventional piezoelectric quartz transducers. A marked increase in the EMATs acoustic coupling efficiency (generation and detection efficiency) occurred close to TN.  相似文献   

19.
The critical current density Jc of some of the superconducting samples, calculated on the basis of the Bean’s model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim’s expression of the critical current density, Jc = k/(H0 + H), where Jc has positive curvature for all H, has been employed by connecting the positive constants k and H0 with the features of the hysteresis loop of a superconductor. A relation between the full penetration field Hp and the magnetic field Hmin, at which the magnetization is minimum, is obtained from the Kim’s theory. Taking the value of Jc at H = Hp according to the actual loop width, as in the Bean’s theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H0 are obtained in terms of the magnetization values M+(?Hmin), M?(Hmin), M+(Hp) and M?(Hp). The resulting method of estimating Jc from the hysteresis loop turns out to be as simple as the Bean’s method.  相似文献   

20.
Low-field ac measurements of magnetic susceptibility of YBa2Cu3O7 high-temperature superconducting thin film were carried out over a wide range of temperatures and ac magnetic field amplitudes. A strong field dependence of the real χ′ and imaginary χ″ components was observed. The field dependence of the imaginary component is used to extract the temperature dependence of the critical current density in the sample using the critical state model. The exponent β of the power law relation Jc  (1 ? T/Tc)β was determined from ac-susceptibility data and different values were found. Experimental results are compared with predictions of some existing theoretical models describing the ac response of superconducting thin film in perpendicular ac field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号