首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以往关于资产组合选择的研究大多假设市场上存在无风险资产,但无风险资产实际上是不存在的.当不存在无风险资产时,假设投资者的效用定义在消费上,消费一直是投资者财富的一个固定比例,投资者的最优资产组合由两部分组成:短视的资产组合和对冲组合.假设只有股票和债券两种风险资产,当股票和债券的风险具有负的相关性时,投资者现在会消费更多,同时也会在股票上投资更多;两者正相关时,投资者无法降低风险,会减持股票并降低当前消费;两者不相关时,投资者持有的股票权重和存在无风险资产时一样.最后,还推导出了多种资产情况下最优消费和资产组合的解析表达式.  相似文献   

2.
This paper studies the optimal consumption–investment strategy with multiple risky assets and stochastic interest rates, in which interest rate is supposed to be driven by the Vasicek model. The objective of the individuals is to seek an optimal consumption–investment strategy to maximize the expected discount utility of intermediate consumption and terminal wealth in the finite horizon. In the utility theory, Hyperbolic Absolute Risk Aversion (HARA) utility consists of CRRA utility, CARA utility and Logarithmic utility as special cases. In addition, HARA utility is seldom studied in continuous-time portfolio selection theory due to its sophisticated expression. In this paper, we choose HARA utility as the risky preference of the individuals. Due to the complexity of the structure of the solution to the original Hamilton–Jacobi–Bellman (HJB) equation, we use Legendre transform to change the original non-linear HJB equation into its linear dual one, whose solution is easy to conjecture in the case of HARA utility. By calculations and deductions, we obtain the closed-form solution to the optimal consumption–investment strategy in a complete market. Moreover, some special cases are also discussed in detail. Finally, a numerical example is given to illustrate our results.  相似文献   

3.
Benth and Karlsen [F.E. Benth, K.H. Karlsen, A note on Merton's portfolio selection problem for the Schwartz mean-reversion model, Stoch. Anal. Appl. 23 (2005) 687-704] treated a problem of the optimisation of the selection of a portfolio based upon the Schwartz mean-reversion model. The resulting Hamilton-Jacobi-Bellman equation in 1+2 dimensions is quite nonlinear. The solution obtained by Benth and Karlsen was very ingenious. We provide a solution of the problem based on the application of the Lie theory of continuous groups to the partial differential equation and its associated boundary and terminal conditions.  相似文献   

4.
In this paper, we consider a mean–variance portfolio optimization problem for a fuzzy discrete-time insurance risk model. The model consists of independent, identically distributed net losses considered within successive time periods, and incorporates investment incomes from a two-asset portfolio. More precisely, in the beginning of each period, the surplus is invested in both a risk-free bond with fixed interest, and a risky stock with fuzzy return rate. Our purpose is to determine the proportion invested in the stock that maximizes the insurer’s expected wealth, while reducing his risks. Therefore, for this fuzzy model, we formulate mean–variance optimization problems that also include constraints on ruin, and we present a method for determining the resulting optimal proportion to be invested in the risky stock. This method is illustrated in a numerical study in which the fuzzy return rate is considered to be an adaptive fuzzy number that generalizes the well-known trapezoidal fuzzy number.  相似文献   

5.
We study an optimization problem of a family under mean–variance efficiency. The market consists of cash, a zero-coupon bond, an inflation-indexed zero-coupon bond, a stock, life insurance and income-replacement insurance. The instantaneous interest rate is modeled as the Cox–Ingersoll–Ross (CIR) model, and we use a generalized Black–Scholes model to characterize the stock and labor income. We also take into account the inflation risk and consider our problem in the real market. The goal of the family is to maximize the mean of the surplus wealth at the retirement or death of the breadwinner and minimize its variance by finding a portfolio selection. The efficient frontier and optimal strategies are derived through the dynamic programming method and the technique of solving associated nonlinear HJB equations. We also present a numerical illustration to explore the impact of economical parameters on the efficient frontier.  相似文献   

6.
Capital market research seems to be widely governed by traditional static linear models like arbitrage pricing theory and capital asset pricing model, though there is some evidence that better results can be achieved using nonlinear approaches. In this study we described a portfolio optimization model based on artificial neural networks embedded in the framework of a nonlinear dynamic capital market model, the coherent market hypothesis. The main advantage of this theory is that it drops the premise of rational investors and therefore relaxes the precondition of approximately normally distributed stock returns. Neural networks are used to estimate the return distributions in order to forecast the fundamental situation and the level of group behavior of the specific stocks. On the basis of these forecasts the relative stock performance is predicted and used to manage stock portfolios, In a simulation with out-of-sample data from 1991–1994 a portfolio constructed from the eight best ranked stocks achieved an annual return rate about 25% higher than that of the market portfolio and one built from the eight worst ranked stocks attained a return about 25% lower than the market portfolio's return rate. A hedging strategy based on the two aforementioned portfolios leads to a consistently positive annual return of about 25% regardless of the movements of the market portfolio with only 41% of the risk of a buy and hold strategy in the market portfolio.  相似文献   

7.
We consider a nonlinear optimal control problem with an integral equation as the control object, subject to control constraints. This integral equation corresponds to the fractional moment of a stochastic process involving short-range and long-range dependences. For both cases, we derive the first-order necessary optimality conditions in the form of the Euler–Lagrange equation, and then apply them to obtain a numerical solution of the problem of optimal portfolio selection.  相似文献   

8.
We observe that the comparison result of Barles–Biton–Ley for viscosity solutions of a class of nonlinear parabolic equations can be applied to a geometric fully nonlinear parabolic equation which arises from the graphic solutions for the Lagrangian mean curvature flow. To cite this article: J. Chen, C. Pang, C. R. Acad. Sci. Paris, Ser. I 347 (2009).  相似文献   

9.

High-dimensional partial differential equations (PDEs) appear in a number of models from the financial industry, such as in derivative pricing models, credit valuation adjustment models, or portfolio optimization models. The PDEs in such applications are high-dimensional as the dimension corresponds to the number of financial assets in a portfolio. Moreover, such PDEs are often fully nonlinear due to the need to incorporate certain nonlinear phenomena in the model such as default risks, transaction costs, volatility uncertainty (Knightian uncertainty), or trading constraints in the model. Such high-dimensional fully nonlinear PDEs are exceedingly difficult to solve as the computational effort for standard approximation methods grows exponentially with the dimension. In this work, we propose a new method for solving high-dimensional fully nonlinear second-order PDEs. Our method can in particular be used to sample from high-dimensional nonlinear expectations. The method is based on (1) a connection between fully nonlinear second-order PDEs and second-order backward stochastic differential equations (2BSDEs), (2) a merged formulation of the PDE and the 2BSDE problem, (3) a temporal forward discretization of the 2BSDE and a spatial approximation via deep neural nets, and (4) a stochastic gradient descent-type optimization procedure. Numerical results obtained using TensorFlow in Python illustrate the efficiency and the accuracy of the method in the cases of a 100-dimensional Black–Scholes–Barenblatt equation, a 100-dimensional Hamilton–Jacobi–Bellman equation, and a nonlinear expectation of a 100-dimensional G-Brownian motion.

  相似文献   

10.
11.
This paper extends the classical consumption and portfolio rules model in continuous time [Merton, R.C., 1969. Lifetime portfolio selection under uncertainty: The continuous time case. Review of Economics and Statistics 51, 247–257, Merton, R.C., 1971. Optimum consumption and portfolio rules in a continuous time model. Journal of Economic Theory 3, 373–413] to the framework of decision-makers with time-inconsistent preferences. The model is solved for different utility functions for both, naive and sophisticated agents, and the results are compared. In order to solve the problem for sophisticated agents, we derive a modified HJB (Hamilton–Jacobi–Bellman) equation. It is illustrated how for CRRA functions within the family of HARA functions (logarithmic and power utilities) the optimal portfolio rule does not depend on the discount rate, but this is not the case for a general utility function, such as the exponential (CARA) utility function.  相似文献   

12.
This paper explicitly derives the optimal dynamic consumption and portfolio choice of an individual with prospect theory preferences. The individual is loss averse, endogenously updates his reference level over time, and distorts probabilities. We show that the optimal consumption strategy is rather insensitive to economic shocks. In particular, in case the individual sufficiently overweights unlikely unfavorable events, our model generates an endogenous floor on consumption. As a result, an individual with prospect theory preferences typically implements a (very) conservative portfolio strategy. We discuss implications of our results for the design of investment-linked annuity products.  相似文献   

13.
This article compares several estimation methods for nonlinear stochastic differential equations with discrete time measurements. The likelihood function is computed by Monte Carlo simulations of the transition probability (simulated maximum likelihood SML) using kernel density estimators and functional integrals and by using the extended Kalman filter (EKF and second-order nonlinear filter SNF). The relation with a local linearization method is discussed. A simulation study for a diffusion process in a double well potential (Ginzburg–Landau equation) shows that, for large sampling intervals, the SML methods lead to better estimation results than the likelihood approach via EKF and SNF. A second study using a nonlinear diffusion coefficient (generalized Cox–Ingersoll–Ross model) demonstrates that the EKF type estimators may serve as efficient alternatives to simple maximum quasilikelihood approaches and Monte Carlo methods.  相似文献   

14.
本文研究了投资者在极端事件冲击下带通胀的最优投资组合选择问题, 其中投资者不仅对损失风险是厌恶的而且对模型不确定也是厌恶的. 投资者在风险资产和无风险资产中进行投资. 首先, 利用Ito公式推导考虑通胀的消费篮子价格动力学方程, 其次由通胀折现的终端财富预期效用最大化, 对含糊厌恶投资者的最优期望效用进行刻画. 利用动态规划原理, 建立最优消费和投资策略所满足的HJB方程. 再次, 利用市场分解的方法解出HJB方程, 获得投资者最优消费和投资策略的显式解. 最后, 通过数值模拟, 分析了含糊厌恶、风险厌恶、跳和通胀因素对投资者最优资产配置策略的影响.  相似文献   

15.
Abstract. This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature.  相似文献   

16.
We consider a collective insurance risk model with a compound Cox claim process, in which the evolution of a claim intensity is described by a stochastic differential equation driven by a Brownian motion. The insurer operates in a financial market consisting of a risk-free asset with a constant force of interest and a risky asset which price is driven by a Lévy noise. We investigate two optimization problems. The first one is the classical mean-variance portfolio selection. In this case the efficient frontier is derived. The second optimization problem, except the mean-variance terminal objective, includes also a running cost penalizing deviations of the insurer’s wealth from a specified profit-solvency target which is a random process. In order to find optimal strategies we apply techniques from the stochastic control theory.  相似文献   

17.
《Optimization》2012,61(2):167-180
This article introduces a new concept of an exceptional family of elements for a generalized set-valued variational inequality in Banach spaces. By using this concept and the degree theory for the generalized set-valued variational inequality introduced by Wang and Huang [Zh.B. Wang and N.J. Huang, Degree theory for a generalized set-valued variational inequality with an application in Banach spaces, J. Glob. Optim. 49 (2011), pp. 343–357], some solvability results for the generalized set-valued variational inequality and its special cases are given in Banach spaces under suitable conditions.  相似文献   

18.
The Swift–Hohenberg equation is a central nonlinear model in modern physics. Originally derived to describe the onset and evolution of roll patterns in Rayleigh–Bénard convection, it has also been applied to study a variety of complex fluids and biological materials, including neural tissues. The Swift–Hohenberg equation may be derived from a Lyapunov functional using a variational argument. Here, we introduce a new fully-discrete algorithm for the Swift–Hohenberg equation which inherits the nonlinear stability property of the continuum equation irrespectively of the time step. We present several numerical examples that support our theoretical results and illustrate the efficiency, accuracy and stability of our new algorithm. We also compare our method to other existing schemes, showing that is feasible alternative to the available methods.  相似文献   

19.
In this article, we investigate a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density. We prove the global existence of weak solutions and general decay of the energy by using the Faedo–Galerkin method [Z.Y. Zhang and X.J. Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Comput. Math. Appl. 59 (2010), pp. 1003–1018; J.Y. Park and J.R. Kang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Acta Appl. Math. 110 (2010), pp. 1393–1406] and the perturbed energy method [Zhang and Miao (2010); X.S. Han, and M.X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal. TMA. 70 (2009), pp. 3090–3098], respectively. Furthermore, for certain initial data and suitable conditions on the relaxation function, we show that the energy decays exponentially or polynomially depending the rate of the decay of the relaxation function. This result is an improvement over the earlier ones in the literature.  相似文献   

20.
We study the classical optimal investment and consumption problem of Merton in a discrete time model with frictions. Market friction causes the investor to lose wealth due to trading. This loss is modeled through a nonlinear penalty function of the portfolio adjustment. The classical transaction cost and the liquidity models are included in this abstract formulation. The investor maximizes her utility derived from consumption and the final portfolio position. The utility is modeled as the expected value of the discounted sum of the utilities from each step. At the final time, the stock positions are liquidated and a utility is obtained from the resulting cash value. The controls are the investment and the consumption decisions at each time. The utility function is maximized over all controls that keep the after liquidation value of the portfolio non-negative. A dynamic programming principle is proved and the value function is characterized as its unique solution with appropriate initial data. Optimal investment and consumption strategies are constructed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号