首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a comparison study of LaOFeP and LaOFeAs, two parent compounds of recently discovered iron-pnictide superconductors, using angle-resolved photoemission spectroscopy. Both systems exhibit some common features that are very different from well-studied cuprates. In addition, important differences have also been observed between these two ferrooxypnictides. For LaOFeP, quantitative agreement can be found between our photoemission data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound. In contrast, the agreement between LDA calculations and experiments in LaOFeAs is relatively poor, as highlighted by the unexpected Fermi surface topology around (π, π). Further investigations are required for a comprehensive understanding of the electronic structure of LaOFeAs and related compounds.  相似文献   

2.
Recently found iron-pnictide superconductor (Ba,K)Fe2As2 and the heavy-fermion superconductor CeCu2Si2 both have the same crystal structure. In this paper we have calculated the electronic structure of LaFe2Si2 and LaFe2Ge2 from first-principles. These compounds also have the same crystal structure and closely related to both of (Ba,K)Fe2As2 and CeRu2Ge2. The obtained Fermi surfaces of LaFe2Si2 and LaFe2Ge2 resemble those of LaRu2Ge2, which are already found that they well explain the results of the dHvA experiments of CeRu2Ge2. Their density of states curves show the common feature with CaFe2As2. The density of states at the Fermi level strongly depends on the distortion of the FeX4 tetrahedra and/or the height of the X atom from the two-dimensional Fe plane, as also found in iron-pnictide system. The electronic specific heat coefficient is 11.8 mJ/mol K2 for LaFe2Si2 and 12.5 mJ/mol K2 for LaFe2Ge2, which is about 1/3 and 1/2 of experimental results, respectively.  相似文献   

3.
Anomalous X-ray scattering experiments for glassy room-temperature superionic conductors (As2Se3)0.4 (AgI)0.6 and (As2Se3)0.4(AgBr)0.6 were performed close to the As, Se, Ag, and Br K edges using a third-generation synchrotron radiation facility, ESRF. The differential structure factors, ΔiS(Q), were obtained from detailed analyses, indicating that ΔAsS(Q) and ΔSeS(Q) of both the glassy superionic semiconductors are similar to those of glassy As2 Se3 except the prepeak in ΔSeS(Q). The ΔAgS(Q) spectrum of (As2Se3)0.4 (AgI)0.6 looks molten salt-like. However, the ΔAg S(Q) of (As2Se3)0.4(AgBr)0.6 glass have quite different features from that of (As2Se3)0.4 (AgI)0.6 glass in the low Q range, and the ΔBrS(Q) has even a pre-shoulder around 13 nm? 1 unlike molten salts. In the differential pair distribution functions Δig(r) obtained from the Fourier transforms of ΔiS(Q), the first peaks of ΔAsg(r) and ΔSeg(r) show no correlation with those of ΔAgg(r) and ΔBrg(r), and vice versa. From these results, it can be concluded that a pseudo-binary mixture of the As2Se3 network matrix and AgX-related ionic conduction pathways is a good structural model for these superionic glasses. Differences between the AgBr- and AgI mixtures were found in the second-neighbor structures around the Ag atoms, which may reflect those in the crystal structures of the AgX salts.  相似文献   

4.
Magnetic and electronic structure calculations are carried out for hypothetical zinc-blende (zb) phase of FeX (X=P, As, Sb) by using the full-potential linearized augmented plane wave (FLAPW) method. For zb FeSb, the total energy has been calculated as a function of lattice constant in ferromagnetic (FM) and antiferromagnetic (AFM) states. We found that the ground state of zb FeSb is very stable with respect to compression and expansion of the unit cell. The magnetic moment of zb FeSb in the AFM state is increasing with the lattice constant. The magnetic and electronic structures calculations of FeAs (FeP) are carried out for the lattice constants of GaAs (GaP), InAs (InP), and Si. Our finding shows that AFM is the ground state for all of our calculated zb FeX compounds and do not belong to the class of zb half metallic ferromagnets.  相似文献   

5.
We review the properties of Ni-based superconductors which contain Ni2X2 (X = As, P, Bi, Si, Ge, B) planes, a common structural element found also in the recently discovered FeAs superconductors. Strong evidence for the fully gapped nature of the superconducting state has come from field dependent thermal conductivity results on BaNi2As2. Coupled with the lack of magnetism, the majority of evidence suggests that the Ni-based compounds are conventional electron–phonon mediated superconductors. However, the increase in Tc in LaNiAsO with doping is anomalous, and mimics the behavior in LaFeAsO. Furthermore, comparisons of the properties of Ni- and Fe-based systems show many similarities, particularly with regards to structure–property relationships. This suggests a deeper connection between the physics of the FeAs superconductors and the related Ni-based systems which deserves further investigation.  相似文献   

6.
The phonon dispersion curves of the C15-type of Al2Sc and Al2Y compounds are investigated, using density functional theory within the generalized gradient approximation (GGA), based on the “direct method”. The obtained results show that both compounds are dynamically stable. The temperature dependence of the various thermodynamical quantities such as internal energy, free energy, entropy, and heat capacity are also predicted under the harmonic approximation, and the observed trends are discussed in detail.  相似文献   

7.
Ternary transition metal chalcogenides (TTMCs) have attracted interest due to the discovery of their Weyl semimetallic property and the recent synthesis of layered TTMCs which are regarded as potential candidates for two-dimensional (2D) topological insulators. Here, employing first-principles calculations, we predicted the emergence of non-trivial band topologies in the monolayer MM'X4 family (M= V, Nb, or Ta; M' = Co, Rh, or Ir; and X = Se or Te) within hybrid functional calculations. Five of eighteen 2D materials were found to be topological insulators, while four of them are magnetic thin films. The nontrivial topologies were verified via the calculated Z2 topological invariant and topologically protected edge states. Further calculations showed a strain-induced phase transition in VCoTe4 from a magnetic phase to a nonmagnetic topological insulating phase. Our comprehensive study revealed a diverse family of monolayer ternary transition metal chalcogenides adding new members to the current catalog of 2D topological insulators and 2D magnetic materials.  相似文献   

8.
We have performed ab initio self-consistent calculations based on full potential linear augmented plane-wave method (FP-LAPW) with the local density approximation (LDA) and generalised gradient approximation (GGA) to investigate the relativistic effects on the structural, electronic, transport and optical properties of II–VI compounds. We mainly show that the stabilisation (destabilisation) of s, p*(p) orbital energies reduces the lattice parameters of II–VI compounds, the band gaps and the effective masses. This, however, induces strong spin–orbit splitting of heavier II–VI compounds.  相似文献   

9.
We have performed accurate ab initio total energy calculations using the full-potential linear augmented plane wave plus local orbitals method with the local density approximation for the exchange–correlation potential to investigate the systematic trends for structural and elastic properties of the cubic LaFe4A12 skutterudites’ family depending on the type of A pnicogen atom (A stands for P, As and Sb). The calculated equilibrium lattice constants and internal free parameters are in good agreement with the experimental results. For the first time, the numerical estimates of the independent elastic constants and their pressure dependence are performed using the total energy variation as function of strain technique. Isotropic elastic parameters and related properties, namely bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, Lamé’s coefficients, average sound velocity and Debye temperature, are estimated in the framework of the Voigt–Reuss–Hill approximation for ideal polycrystalline LaFe4A12 aggregates.  相似文献   

10.
11.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1929-1932
A2−αA′αMO4 (A = Pr, Sm, A′ = Sr, M = Ni, Mn) with K2NiF4-type structure were synthesized by solid reaction. Their chemical stability, electrical conductivity and thermal expansion behavior as well as cathodic polarization were investigated in relation to the cathode of SOFC. The results showed that A2−αA′αMO4 exhibited a low reactivity with yttria stabilized zirconia (YSZ) electrolyte. The thermal expansion coefficient (TEC) values were changed with the ionic radius of A. The specific conductivities of the nickelates were higher than those of manganites. While the nickelates showed a lower cathodic polarization in comparison with manganites.  相似文献   

13.
In this study, full potential linearized augmented plane wave (FP-LAPW) method has been used to calculate structural, electronic and magnetic characteristics of CoTcCrZ (Z = Si, Ge, P) Equiatomic Quaternary Heusler alloys (EQHAs). Furthermore, Generalized Gradient Approximation (GGA) and Hubbard potential (GGA+U) are adopted in the parametrization of Perdew-Burke-Ernzerhof (PBE). Structural stability calculations confirmed that the Type II is the most stable structure of all considered alloys. Further investigations were carried out for the most stable Type (i.e. Type II). Comparison of electronic structure calculations performed by GGA and GGA+U methods concluded that considered alloys show half-metallic nature for GGA+U method. Magnetic moments for all these alloys are determined which are found in accordance to the Slater-Pauling rule. Half-metallicity has been verified in all these considered Heusler alloys (HAs) from the calculations of spin-polarization at the Fermi level (EF). Moreover, the Curie temperature (Tc) is estimated by employing mean field approximation (MFA).  相似文献   

14.
F. Bastiman  A.G. Cullis  M. Hopkinson   《Surface science》2009,603(16):2398-2402
Atomic resolution scanning tunnelling microscopy (STM) has been used to study in situ the As-terminated reconstructions formed on GaAs(0 0 1) surfaces in the presence of an As4 flux. The relationship between the As-rich (2 × 4) and c(4 × 4) surfaces is observed throughout the gradual evolution of the reconstruction transformation. The results suggest that during the initial stage of the transformation, Ga-rich As-terminated variations of the c(4 × 4) form in order to accommodate excess mobile Ga produced by pit formation. These transient structures later planarize, as excess Ga is incorporated at step/island edges. Successive imaging of the same sample area during As4 irradiation allows point-by-point adatom binding to be analysed in a way inaccessible to MBE–STM systems relying on sample quenching and transfer.  相似文献   

15.
《Solid State Ionics》2006,177(7-8):691-695
Single crystals of the lithium-rich lithium manganese oxide spinels Li1 + xMn2  xO4 with x = 0.10 and 0.14 have been successfully synthesized in high-temperature molten chlorides at 1023 K. The single-crystal X-ray diffraction study confirmed the cubic Fd3¯m space group and the lattice parameters of a = 8.2401(9) Å for x = 0.10 and a = 8.2273(10) Å for x = 0.14 at 300 K, respectively. The crystal structures have been refined to the conventional values R = 3.7% for x = 0.10 and R = 3.1% for x = 0.14, respectively. Low-temperature single-crystal X-ray diffraction experiments revealed that these single crystal samples showed no phase transition between 100 and 300 K. The electron-density distribution images in these compounds by the single-crystal MEM analysis clearly showed strong covalent bonding features between the Mn and O atoms due to the Mn–3d and O–2p interaction.  相似文献   

16.
The crystal structure and physical properties of BaFe2As2, BaCo2As2, and BaNi2As2 single crystals are surveyed. BaFe2As2 gives a magnetic and structural transition at TN = 132(1) K, BaCo2As2 is a paramagnetic metal, while BaNi2As2 has a structural phase transition at T0 = 131 K, followed by superconductivity below Tc = 0.69 K. The bulk superconductivity in Co-doped BaFe2As2 below Tc = 22 K is demonstrated by resistivity, magnetic susceptibility, and specific heat data. In contrast to the cuprates, the Fe-based system appears to tolerate considerable disorder in the transition metal layers. First principles calculations for BaFe1.84Co0.16As2 indicate the inter-band scattering due to Co is weak.  相似文献   

17.
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic and electronic structure of the group-IV adsorbates (C, Si, Ge, Sn, and Pb) on the GaAs(0 0 1)-(1 × 2) surface considered in two different models: (i) non-segregated Ga-IV-capped structure and (ii) segregated structure in which the group-IV atoms occupying the second layer while the As atom floats to the surface. The non-segregated structure is energetically more favorable than the segregated structure for Sn and Pb, whereas it is the other way around for C, Si, and Ge.  相似文献   

18.
《Solid State Ionics》2006,177(1-2):121-127
Lithium cobalt vanadate LixCoVO4 (x = 0.8; 1.0; 1.2) has been prepared by a solid state reaction method. The XRD analysis confirms the formation of the sample. A new peak has been observed for Li1.0CoVO4 and for Li1.2CoVO4 indicating the formation of a new phase. The XPS analysis indicates the reduction in the oxidation of vanadium and oxygen with the addition of Li in LixCoVO4 (x = 0.8, 1.0, 1.2). The impedance analysis gives the conductivity value as 2.46 × 10 5, 6.16 × 10 5, 9 × 10 5 Ω 1 cm 1 for LixCoVO4 (x = 0.8; 1.0; 1.2), all at 623 K. The similarity in the bulk activation energy (Ea) and the activation enthalpy for migration of ions (Eω) indicate that the conduction in Li1.2CoVO4 has been due to hopping mechanism.  相似文献   

19.
We present theoretical and experimental study of the structural and electronic properties of the Ti/W(1 1 1) adsorption system. Atomic arrangements of the considered surfaces and their electronic structures have been obtained from first-principles pseudopotential calculations based on the density functional theory in a plane-wave-basis implementation. The corresponding experimental data have been provided by photofield emission spectroscopy. Investigations of the clean and Ti-covered W(1 1 1) surfaces indicate substantial structural relaxations deep into the substrate, and a noticeable modification of the surface electronic properties of the system induced already by a thin film of titanium. Configuration with adatoms positioned in substrate-lattice-continuation (i.e., deep-hollow) sites is found to be energetically most favorable. A good agreement between the measured photofield emission spectra and the computed local-density-of-states distributions confirms our theoretical predictions for a clean W(1 1 1) substrate as well as Ti coverages of 0.25 and 1 ML.  相似文献   

20.
Thermoluminescence (TL) properties of sulfate-based phosphors activated by different rare earths have received tremendous attention to the field of radiation dosimetry. Those TL materials based on CaSO4 have been widely applied for medical and environmental dosimetry. Taking this fact into account we have synthesized Na6Mg(SO4)4 doped with Ce and Tb by wet chemical method. The prepared phosphor was characterized by XRD, FTIR, photoluminescence (PL) and thermoluminescence. For TL study, the phosphor is irradiated with γ-rays from 60Co source. For studying luminescence properties, the prepared phosphor was annealed at different temperatures and effects of these annealing temperatures on Na6Mg(SO4)4 samples are investigated and quantified. The changes in the glow curve and PL emission spectrum are also investigated as a function of annealing temperature and the annealing temperature was optimized. For calculation of trapping parameters various methods such as peak shape (PS) method, initial rise (IR) method, various heating rate (VHR) method, and computerized glow curve deconvolution (CGCD) are employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号