首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heat transfer and the pressure drop characteristics of turbulent flow of air through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and with wire-coil inserts have been studied experimentally. Circular duct has also been used. The transverse ribs in combination with wire-coil inserts have been found to perform better than either ribs or wire-coil inserts acting alone. The flow friction and thermal characteristics are governed by duct aspect ratio, coil helix angle and wire diameter of the coil, rib height and rib spacing, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. It has been found that on the basis of constant pumping power, up to 35% heat duty increase occurs for the combined ribs and wire-coil inserts case compared to the individual ribs and wire-coil inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 20% for the combined enhancement geometry than the individual enhancement geometries.  相似文献   

2.
The heat transfer and the pressure drop characteristics of turbulent flow of air (10,000 < Re < 100,000) through rectangular and square ducts with combined internal axial corrugations on all the surfaces of the ducts and with twisted-tape inserts with and without oblique teeth have been studied experimentally. The axial corrugations in combination with twisted-tapes of all types with oblique teeth have been found to perform better than those without oblique teeth in combination with axial corrugations. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, corrugation angle, corrugation pitch, twist ratio, space ratio, length, tooth horizontal length and tooth angle of the twisted-tape, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to 55% heat duty increase occurs for the combined axial corrugation and regularly spaced twisted-tape elements inserts with oblique teeth case compared to without oblique teeth twisted-tape inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 47% for the combined enhancement geometry than the individual enhancement geometries. However, full-length and short-length twisted-tapes with oblique teeth in combination with axial corrugations show only marginal improvements over the twisted-tapes without oblique teeth.  相似文献   

3.
In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al2O3/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al2O3 nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

4.
The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime. The coiled wire has equilateral triangular cross section and was inserted separately from the tube wall. The experiments were carried out with three different pitch ratios (P/D = 1, 2 and 3) and two different ratio of equilateral triangle length side to tube diameter (a/D = 0.0714 and 0.0892) at a distance (s) of 1 mm from the tube wall in the range of Reynolds number from 3500 to 27,000. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The experimental results obtained from a smooth tube were compared with those from the studies in literature for validation of experimental set-up. The use of coiled wire inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. The Nusselt number rises with the increase of Reynolds number and wire thickness and the decrease of pitch ratio. The highest overall enhancement efficiency of 36.5% is achieved for the wire with a/D = 0.0892 and P/D = 1 at Reynolds number of 3858. Consequently, the experimental results reveal that the best operating regime of all coiled wire inserts is detected at low Reynolds number, leading to more compact heat exchanger.  相似文献   

5.
Experiments were conducted on two-phase flow in laterally ribbed rectangular ducts. Air–water adiabatic flow at atmospheric pressure and room temperature was driven through a 3.6 m long rectangular ribbed test section with cross-section of 100 × 50 mm. To investigate the effect of rib thickness and pitch on flow pattern diagrams and transition boundaries, nine various rib arrangements were implemented with thicknesses of 2, 4 and 8 mm and pitches of 50, 60, and 80 mm. Unlike non-ribbed rectangular duct, lateral rib arrangement did not allow any stratified flow to occur. However wavy, plug and slug flows were parallel in both flow conditions, rib existence caused explicitly coarser pattern shapes. Increasing the rib thickness, while keeping the pitch constant, results in different flow patterns to occur as well as dramatic changes in boundaries positions and shapes. On the other hand, as pitch shifts up at a constant rib thickness, one can notice the duplication of almost identical flow patterns and their boundaries however, boundary values undergo tangible changes. Consistent attention was paid to conditions under which wavy pattern zone extends while intermittent flow zones were avoided. Studies concerned ribbed duct are of major applicable value to designing and enhancing heat transfer systems.  相似文献   

6.
Experiments were performed to investigate the effect of duct height on heat transfer enhancement of a surface affixed with arrays (7 × 7) of short rectangular plate fins of a co-rotating type pattern in the duct. An infrared imaging system is used to measure detailed distributions of the heat transfer at the endwall along with the fin base. An infrared camera of TVS 8000 with 160 × 120 point In–Sb sensor was used to measure the temperature distributions in order to calculate the local heat transfer coefficients of the representative fin regions. Pressure drop and heat transfer experiments were performed for a co-rotating fin pattern varying the duct height from 20?50 mm. The friction factor calculated from the pressure drop shows that comparatively larger friction occurs for the smaller duct cases and the friction factor slowly decreases with increasing Reynolds number. The effect of duct height on the area-averaged heat transfer results show that heat transfer initially increases with duct height and then finally decreases with increasing the duct height. Detailed heat transfer analysis and iso-heat transfer coefficient contour gives a clear picture of heat transfer characteristics of the overall surface. The relative performance graph indicates that a 25 mm duct is the optimum duct height for the highest thermal performance. In addition, a significant thermal enhancement, 2.8?3.8 times the smooth surface, can be achieved at lower Reynolds number with a co-rotating fin pattern in the duct.  相似文献   

7.
Experimental investigation had been conducted to study the steady-state forced convection heat transfer and pressure drop characteristics of the hydrodynamic fully-developed turbulent flow in the air-cooled horizontal equilateral triangular ducts, which were fabricated with the same length and hydraulic diameter. Inner surfaces of the ducts were fixed with square ribs with different side lengths of 6.35, 9.525 and 12.7 mm, respectively, and the uniform separation between the centre lines of two adjacent ribs was kept constant at 57.15 mm. Both the triangular ducts and the ribs were fabricated with duralumin. The experiments were performed with the hydraulic diameter based Reynolds number ranged from 3100 to 11300. The entire inner wall of the duct was heated uniformly, while the outer surface was thermally insulated. It was found that the Darcy friction factor of the duct was increasing rather linearly with the rib size, and forced convection could be enhanced by an internally ribbed surface. However, the heat transfer enhancement was not proportional to the rib size but a maximum forced convection heat transfer augmentation was obtained at the smallest rib of 6.35 mm. Non-dimensional expressions for the determination of the steady-state heat transfer coefficient and Darcy friction factor of the equilateral triangular ducts, which were internally fabricated with uniformly spaced square ribs of different sizes, were also developed. Received on 25 May 1999  相似文献   

8.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

9.
The present study investigated the effects of four parallel rib arrangements on heat/mass transfer and pressure drop characteristics in rotating two-pass ducts. The experiments of mass transfer and pressure measurement are performed to obtain heat transfer distributions and friction losses. The highest averaged heat (mass) transfer and friction loss in each region appeared in the turning region in the stationary cases, but appeared in the upstream region of the second pass in the rotating cases. Among the tested rib arrangements, the averaged heat (mass) transfer and the friction factor in the second pass in the stationary ducts were high in the cases with the NN- and PP-type ribs; however, in the rotating ducts, they were high in the cases with the NN- and PN-type ribs. The thermal performance in the four different rib arrangements was almost the same.  相似文献   

10.
Experimental investigation of heat transfer characteristics of circular tube fitted with straight full twist insert has been presented. The heat transfer coefficient increases with Reynolds number and decreasing spacer distance with maximum being 2 in. spacer distance for both the type of twist inserts. Also, there is no appreciable increase in heat transfer enhancement in straight full twist insert with 2 in. spacer distance. Experiments were carried out in turbulent flow using straight full twist insert with 4 in. spacer and similar trend of increasing Nusselt number with Reynolds number was observed. Performance evaluation analysis was made and the maximum performance ratio was obtained for each twist insert corresponding to the Reynolds number of 2550.  相似文献   

11.
In this work, an experimental investigation on cooling performance of using nanofluid to replace the pure water as the coolant in a minichannel heat sink is conducted. The heat sink comprises of four circular channels with hydraulic diameter of 6 mm. Thermal and hydraulic performances of the nanofluid cooled minichannel heat sink are evaluated from the results obtained for the Nusselt number, friction factor, thermal resistance and pumping power, with the volume flow rate ranging from 0.3 to 1.5 L/min. The experimental results show that the nanofluid cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient. Despite the marked increase in dynamic viscosity due to dispersing the nanoparticles in water, the friction factor for the nanofluid-cooled heat sink is found slightly increased only.  相似文献   

12.
An experimental study in an open-ended vertical channel is carried out in order to describe the fluid dynamics and heat transfer of transient free convection inside a vertical rib-roughened channel asymmetrically heated at various uniform heat fluxes (650, 700, and 780 W/m2) corresponding to various modified Rayleigh numbers (3.65 × 106, 3.93 × 106 and 4.4 × 106). Two ribs are symmetrically located on each wall. The investigations focused more specifically on the influence of the ribs positions inside the channel and the modified Rayleigh number (Ra*) both in steady-state regime and during the transitional phase occurring just after the start of the heating on the flow structure and the heat transfer performance. The results showed the appearance of large-scale flow instabilities which will develop and propagate until the development of the pocket-like vortex (reversed flow). Also, the formation and breakup of recirculation eddies, vortex banishment, besides that a separation and shifting of the boundary layer from one wall to another are identified. The best position of the ribs for heat extraction depends on the magnitude of the Rayleigh number. In that case, the top position is the optimal position for the small and the moderate modified Rayleigh numbers.  相似文献   

13.
The local heat transfer and pressure drop characteristics of developing turbulent flows of air in three stationary ribbed square ducts have been investigated experimentally. These are: ribbed square duct with constant cross-section (straight duct), ribbed divergent square duct and ribbed convergent square duct. The convergent/divergent duct has an inclination angle of 1°. The measurement was conducted within the range of Reynolds numbers from 10 000 to 77 000. The heat transfer performance of the divergent/convergent ducts is compared with the ribbed straight duct under three constraints: identical mass flow rate, identical pumping power and identical pressure drop. Because of the streamwise flow acceleration or deceleration, the local heat transfer characteristics of the divergent and convergent ducts are quite different from those of the straight duct. In the straight duct, the fluid flow and heat transfer become fully developed after 2–3 ribs, while in the divergent and convergent ducts there is no such trend. The comparison shows that among the three ducts, the divergent duct has the highest heat transfer performance, the convergent duct has the lowest, while the straight duct locates somewhere in between.  相似文献   

14.
This paper reports an experimental investigation of the heat transfer performance of the new low-GWP refrigerants, R1234yf and R1234ze(E), during flow boiling heat transfer inside a horizontal high porosity copper foam with 5 Pores Per Inch (PPI). Metal foams are a class of cellular structured materials consisting of a stochastic distribution of interconnected pores; these materials have been proposed as effective solutions for heat transfer enhancement during both single and two-phase heat transfer. R1234yf and R1234ze(E) refrigerants are appealing alternatives of the more traditional R134a by virtue of their negligible values of GWP and normal boiling temperatures close to that of R134a, which make them suitable solution in several different applications, such as: refrigeration and air conditioning and electronic thermal management. This work compares the two-phase heat transfer behaviour of these new HFO refrigerants, studying the boiling process inside a porous medium and permitting to understand their effective heat transfer capabilities. The experimental measurements were carried out by imposing three different heat fluxes: 50, 75, and 100 kW m−2, at a constant saturation temperature of 30 °C; the refrigerant mass velocity was varied between 50 and 200 kg m−2 s−1, whilst the mean vapour quality varied from 0.2 to 0.95. The two-phase heat transfer and pressure drop performance of the two new HFO refrigerants is compared against that of the more traditional R134a.  相似文献   

15.
The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled with a stronger flow separation on the obstacles that further enhances the heat transfer performances. This behavior was confirmed exploiting the wide thermal data base already available, obtaining a direct link between the observed flow features and the heat transfer performances.  相似文献   

16.
The present study investigates the pressure drop characteristics of rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter (D h ) of 26.67 mm. Rib turbulators are attached in the four different cross arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of 2 mm (e) × 3 mm (w) and a rib angle-of-attack of 70°. The pitch-to-rib-height ratio (p/e) is 7.5 and the rib-height-to-hydraulic-diameter ratio (e/D h ) is 0.075. The measured results for each region show that the highest pressure drop appears in the turning region in the stationary case, but appears in the upstream region of the second pass in the rotating case. The heat transfer and the pressure coefficients in the first pass are similar for the stationary and rotating cases in all the tested rib arrangements. After the turning region, however, the heat transfer and pressure drop are high in the cases with the cross NN- and PP-type ribs in the stationary ducts. In the rotating ducts, they are high in the cases with the cross NP- and PP-type ribs.  相似文献   

17.
Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method.  相似文献   

18.
Based on experimental investigations the present study evaluates instability and heat transfer phenomenon under condition of periodic flow boiling of water and ethanol in parallel triangular micro-channels. Tests were performed in the range of hydraulic diameter 100–220 μm, mass flux 32–200 kg/m2 s, heat flux 120–270 kW/m2, vapor quality x = 0.01–0.08. The period between successive events depends on the boiling number and decreases with an increase in the boiling number. The initial film thickness decreases with increasing heat flux. When the liquid film reached the minimum initial film thickness CHF regime occurred. Temporal variations of pressure drop, fluid and heater temperatures were periodic. Oscillation frequency is the same for the pressure drop, for the fluid temperature at the outlet manifold, and for the mean and maximum heater temperature fluctuations. All these fluctuations are in phase. The CHF phenomenon is different from that observed in a single channel of conventional size. A key difference between micro-channel heat sink and single conventional channel is amplification of parallel-channel instability prior to CHF. The dimensionless experimental values of the heat transfer coefficient are presented as the Nusselt number dependence on the Eotvos number and the boiling number.  相似文献   

19.
The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m2 s and heat fluxes from 60.4 to 130.6 kW/m2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.  相似文献   

20.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号