首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Substitution of Ge4+ in place of Cu in Tl0.85Cr0.15Sr2CaCu2?xGexO7?δ (x = 0–0.6) showed initial increase in zero critical temperature value, Tc zero from 98 K (x = 0) to 100 K (x = 0.1) and in the range of 85–86 K for x = 0.2–0.3. The slow decrease in Tc zero is unexpected as tetravalent Ge4+ substitution is expected to strongly reduce hole concentration in the samples and suppress Tc zero. Excess conductivity analyses of resistance versus temperature data based on Asmalazov–Larkin (AL) theory revealed that the substitution induced 2D-to-3D transition of fluctuation induced conductivity with the highest transition temperature, T2D3D observed at x = 0.1. FTIR spectroscopy analysis indicates Ge4+ substitution cause reduction in CuO2/GeO2 interplanar distance while our calculation based on Lawrence–Doniach model revealed highest superconducting coherence length, ξc(0) and interplanar coupling, J at x = 0.3. On the other hand, substitution of divalent Mg2+ for Ca2+ in (Tl0.5Pb0.5)(Sr1.8Yb0.2)(Ca1?yMgy)Cu2O7 (y = 0–1.0), which is not expected to directly vary hole concentration, surprisingly caused Tc zero to increase from 89.6 K (y = 0) to an optimum value of 95.9 K (y = 0.6) before decreasing with further increase in y. Excess conductivity analyses showed 2D-to-3D transition of fluctuation induced conductivity for all samples where the highest T2D3D was at y = 0.4. Similar calculation revealed highest values of ξc(0) and J also at y = 0.4. FTIR analysis of the samples indicates inequivalent Cu(1)O(2)Pb/Tl lengths and possible tilting of CuO2 plane as a result of Mg2+ substitution. The increased ξc(0) and J as a result of the Ge4+ and Mg2+ substitutions are suggested to contributed to sustenance of superconductivity above 80 K in the samples.  相似文献   

2.
Isothermal magnetization M(t) in nanocrystalline single-phase B1 MoCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 5000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with increasing temperature T, and decreases linearly with increasing J. The behaviors of J(t), Ueff(T), and Ueff(J) can be described by the Anderson–Kim flux-creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. The slower relaxation of current density above the broad peak field in the isothermal magnetization curves suggests that the peak is a result of vortex dynamics.  相似文献   

3.
The vortex structure in p-wave superconductors is investigated by the Bogoliubov–de Gennes theory on a tight-binding model. We calculate the temperature dependence of the electronic state at each site in the vortex lattice state, and show the difference between sin px+i sin py-wave and sin px−i sin py-wave superconducting state. Furthermore the relation of the electronic structure and the site-dependence of the nuclear magnetic relaxation time is also discussed.  相似文献   

4.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

5.
The dynamics of a two-dimensional vortex system with strong periodic square columnar pins is investigated. For the case vortex number matching pinning number, we find that the vortex liquid is frozen into square lattice via a continuous transition, and the freezing (melting) temperature Tm is the same as the thermal depinning temperature of vortices, which are different from the first-order phase transition at weak pinning. The zero-temperature critical depinning force Fc0 is exactly the same as the maximum pinning force, and the depinning property at T = 0 can be expressed by scaling v  (F ? Fc0)β with the exponent β close to 0.5. The vF curves at temperatures below Tm show that vortices are pinned at small driving force.  相似文献   

6.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

7.
We have studied the relationship between the crystal structure and the carrier concentration in La2?x?ySrxCeyCuO4 by low-temperature X-ray diffraction method. The analysis for the [1 1 0]t peak of the tetragonal index confirms that the high-temperature tetragonal phase changes to the low-temperature orthorhombic one in both La1.89Sr0.11CuO4 and La1.88Sr0.11Ce0.01CuO4. We have also examined the effects of Tb substitution for La-site on the superconductivity and the structure in La2?x?ySrxTbyCuO4. A dip of the critical temperature Tc(x) due to the 1/8 anomaly and a maximum of Tc(x) at the optimum carrier concentration do not depend on the Tb concentration. This result suggests the possibility that Tb is introduced as the trivalent ion for x = 0.07–0.18.  相似文献   

8.
9.
Based on the pseudopotential formalism under the virtual crystal approximation, the dielectric and lattice vibration properties of zinc-blende InAs1−xySbxPy quaternary system under conditions of lattice matching and lattice mismatching to InAs substrates have been investigated. Generally, a good agreement is noticed between our results and the available experimental and theoretical data reported in the literature. The variation of all features of interest versus either the composition parameter x or the lattice mismatch percentage is found to be monotonic and almost linear. The present study provides more opportunities to get diverse high-frequency and static dielectric constants, longitudinal and transversal optical phonon modes and phonon frequency splitting by a proper choice of the composition parameters x and y (0  x  0.30, 0  y  0.69) and/or the lattice mismatch percentage.  相似文献   

10.
Four atom states Cu3dx2  y2, Cu4s, Oa2pxare involved in a tight-binding model for the superconducting CuO2plane. The orthorhombic distortion is taken into account by the differences of Cu–O hopping amplitudes and single-site oxygen energies εaand εbof two oxygen positions in the elementary cell as well. An effective ‘oxygen’ Hamiltonian including only the electron amplitudes at the oxygen ions is derived. Simple expressions for the constant energy contours and the Fermi surface are obtained and they qualitatively describe the photoemission spectra. Extended saddle points nearp = (π,0) andp = (0,π) are observed in qualitative agreement with the ARPES data. The van Hove singularities of the density of states (DOS) related to the extended saddle points are calculated by a Monte Carlo method. It is found that the splitting of the singularity of the DOS at the bottom of the conduction band is created by the energy difference εa  εb = 2δ.  相似文献   

11.
An Eu2+-activated oxynitride LiSr(4?y)B3O(9?3x/2)Nx:yEu2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr4B3O(9?3x/2)Nx:Eu2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f65d1→4f7 transition of Eu2+. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr3.99B3O8.25N0.5:0.01Eu2+ phosphors, respectively. Concentration quenching of Eu2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu2+-site emission centers in the LiSr4B3O9 host. These results indicate LiSr4B3O(9?3x/2)Nx:Eu2+ phosphor is promising for application in white near-UV LEDs.  相似文献   

12.
《Current Applied Physics》2010,10(2):422-427
New lead-free (Bi1−xyNdxNa1−y)0.5BayTiO3 ceramics were prepared by a conventional ceramic technique and their dielectric and piezoelectric properties were studied. X-ray diffraction studies reveal that Nd3+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) of rhombohedral and tetragonal phases is formed at 0.04 < y < 0.10. The partial substitutions of Nd3+ and Ba2+ decrease effectively the coercive field Ec and increase significantly the remanent polarization Pr. Because of lower Ec, larger Pr and the formation of the MPB, the piezoelectric properties of the ceramics are significantly enhanced at x/y = 0.02/0.06: d33 = 150 pC/N and kp = 30.5%. The ceramics exhibit relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The depolarization temperature Td shows a strong compositional dependence and reaches a minimum value at the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions near the depolarization temperature Td, which cause the polarization hysteresis loop become deformed near/above Td.  相似文献   

13.
The dynamic evolution of Riemann–Silberstein (RS) vortices for Gaussian vortex beams with topological charges m = ± 1 in free space is studied. It is shown that for Gaussian on-axis vortex beams there exist both RS vortex with m = + 2 and circular edge dislocation. For Gaussian off-axis vortex beams the circular edge dislocation splits into two RS vortices with opposite topological charges m = ± 1 and the RS vortex with m = + 2 decays into two vortices with same topological charges m = + 1. The motion of RS vortices takes place by varying the propagation distance, waist width, off-axis parameter, or topological charge. RS vortices for Gaussian vortex-free beams can be treated as a special case. The results are illustrated analytically and numerically.  相似文献   

14.
Dimensionality effects on epitaxial and polycrystalline Cr1?xRux alloy thin films and in Cr/Cr–Ru heterostructures are reported. X-ray analysis on Cr0.9965Ru0.0035 epitaxial films indicates an increase in the coherence length in growth directions (1 0 0) and (1 1 0) with increasing thickness (d), in the range 20≤d≤300 nm. Atomic force microscopy studies on these films shows pronounced vertical growth for d>50 nm, resulting in the formation of columnar structures. The Néel temperatures (TN) of the Cr0.9965Ru0.0035 films show anomalous behaviour as a function of d at thickness d≈50 nm. It is interesting to note that this thickness corresponds to that for which a change in film morphology occurs. Experiments on epitaxial Cr1?xRux thin films, with 0≤x≤0.013 and d=50 nm, give TNx curves that correspond well with that of bulk Cr1?xRux alloys. Studies on Cr/Cr0.9965Ru0.0035 superlattices prepared on MgO(1 0 0), with the Cr layer thickness varied between 10 and 50 nm, keeping the Cr0.9965Ru0.0035 thickness constant at 10 nm, indicate a sharp decrease in TN as the Cr separation layers reaches a thickness of 30 nm; ascribed to spin density wave pinning in the Cr layers for d<30 nm by the adjacent CrRu layers.  相似文献   

15.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

16.
The 5d transition metal W was added into the MgB2 superconductor. The Mg, B and W were sintered at 1173 K for 30 min under H2/Ar atmosphere in the electric furnace. The Wx(MgB2)1?x samples were prepared in the W concentration range of 0 ? x ? 0.05. Temperature and field dependences of magnetization were measured by the SQUID magneto-meter. The field and x dependences of Jc at 20 K were analyzed by the extended critical state model. The enhancement of Jc became maximum for the x = 0.02 sample.  相似文献   

17.
BTlGaN quaternary alloys are proposed as new semiconductor materials for infrared opto-electronic applications. The structural and opto-electronic properties of zinc blende BxTlyGa1−xyN alloys lattice matched to GaN with (0  x and y  0.187) are studied using density functional theory (DFT) within full-potential linearized augmented plane wave (FP-LAPW) method. The calculated structural parameters such as lattice constant a0 and bulk modulus B0 are found to be in good agreement with experimental data using the new form of generalized gradient approximation (GGA-WC). The band gaps of the compounds are also found very close to the experimental results using the recently developed Tran–Blaha-modified Becke–Johnson (TB-mBJ) exchange potential. A quaternary BxTlyGa1−xyN is expected to be lattice matched to the GaN substrate with concentrations x = 0.125 and y = 0.187 allows to produce high interface layers quality. It has been found that B incorporation into BTlGaN does not significantly affect the band gap, while the addition of dilute Tl content leads to induce a strong reduction of the band gap, which in turn increases the emission wavelengths to the infrared region. The refractivity, reflectivity and absorption coefficient of these alloys were investigated. BTlGaN/GaN is an interesting new material to be used as active layer/barriers in quantum wells suitable for realizing advanced Laser Diodes and Light-Emitting Diodes as new sources of light emitting in the infrared spectrum region.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1725-1728
Apatite-type La10  xSi6  yAlyO27  3x/2  y/2 (x = 0–0.33; y = 0.5–1.5) exhibit predominant oxygen ionic conductivity in a wide range of oxygen partial pressures. The conductivity of silicates containing 26.50–26.75 oxygen atoms per formula unit is comparable to that of gadolinia-doped ceria at 770–870 K. The average thermal expansion coefficients are (8.7–10.8) × 10 6 K 1 at 373–1273 K. At temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics and a moderate degradation of the ionic transport with time are observed under reducing conditions, thus limiting the operation temperature of Si-containing solid electrolytes.  相似文献   

19.
We have studied the photoluminescence of a-SixGeyO1  x  yfilms with average Ge-nanocrystal sizes ranging from over 100 nm down to 2 nm. No systematic peak shift of the luminescence bands at 3.0 eV and 2.0 eV with the diameter of the nanocrystals is observed. Comparision with a simplified confinement model shows that quantum size effects cannot explain the blue luminescence. We propose the Ge20defect as a likely source for this band, based on considerations about the crystallization process.  相似文献   

20.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号