首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

2.
The spray–wall impingement process in gasoline direct injection (GDI) engines, which is caused by the interaction among spray, wall and air to move the air–fuel mixture near the spark plug, directly influences the engine performance and emissions. Therefore, a detailed understanding of this process is very important in designing an injection system and controlling a strategy of GDI engines. The purpose of this study is to understand the spray–wall impingement characteristics for more efficient designing of the injection system in GDI engines and to supply the fundamental data under engine operation conditions. The wall impingement processes of hollow-cone fuel spray according to ambient gas conditions and wall geometry are calculated by validated spray models. The calculated results were compared with the experimental results obtained by the laser-induced exciplex fluorescence (LIEF) technique. It was found that the spray and vortex cloud at the high ambient pressure were distributed at inner area of cavity and the more fuel film mass observed at this condition. The fuel film mass decreased with the increase of ambient temperature, while the fuel film mass increased at high cavity angles.  相似文献   

3.
This paper presents the results of a parametric experimental study of free swirling flow at the exit of a flat-vane axial swirler. A total of 16 data sets were acquired by combining four swirler vane angles (22°, 29°, 50.5°, and 58.3°) and four exit nozzles of different diameters (30, 40, 52, and 76 mm). Sophisticated pressure probes consisting of precise microphones and a two-component LDV system were used to investigate the effect of these geometrical parameters on swirling flow regimes characterized by the swirl number. Particular attention was paid to the precessing vortex core (PVC) phenomenon observed at the exit of the swirler nozzle. It has been shown that by varying the vane angle and the diameter of the exit nozzle, it is possible to independently control the swirl number value and the occurrence of a PVC. A distinct correlation has been found between the PVC-induced pressure pulsations detected by acoustic probes and the tangential velocity fluctuations measured by LDV. The use of microphones provides a quick way to measure the frequency response of swirl flow in a wide range of geometries and flow configurations. The PVC effect does not occur at low subcritical values of the integral swirl number (S < 0.5) and in the case of strong swirl flow (Sg = 0.9 and 1.2) in the absence of constriction by the nozzle (De/D0 = 1). The disappearance of the PVC effect for strong swirl flow without constriction is due to the extreme displacement of the flow to the nozzle walls. The absence of a PVC in the flow was inferred not only from measurements of the frequency response of the flow over a wide range of Re numbers, but also from the absence of specific markers in velocity RMS distributions. Measurement results are used to derive an empirical correlation of the integral swirl number and the Strouhal number with a modified geometric swirl number. This allows a generalization of the frequency characteristics of swirling flows with a PVC for flat-vane axial swirlers, which are widely used in engineering.  相似文献   

4.
The gasoline spray characteristics of a pressure-swirl injector were investigated with various exit plane tilts. The analysis focused on the correlation between tilt angle and flow angle. Mie-scattering technique and phase Doppler anemometry were employed to analyze the macroscopic spray development and droplet size distribution of the spray. An analytical method for mass flux estimation was applied to understand the velocity distribution at the nozzle exit. The results showed that the spray shape and velocity distribution of the spray were more asymmetrical at high tilt angles. In particular, an opened hollow cone spray was formed when the tilt angle is greater than the complementary flow angle. The pressure drop inside the spray, one of the crucial factors for the swirl spray collapse at various surrounding conditions, was attenuated in this opened hollow cone spray since the pressure inside the spray was assimilated to the surrounding air pressure. The spray collapse at high fuel temperature and back pressure conditions did not appear when the tilt angle is larger than the complementary flow angle due to the reduced pressure drop inside the spray. However, tilt angle should be optimized to fulfill the requirements of spray robustness and avoid the locally rich area. The droplet size of 70° tilted nozzle spray shows a value similar to that of the original swirl spray in the plane that includes nozzle axis and the major axis of exit surface ellipse (Major axis plane) while it shows an increased value in the plane that includes nozzle axis and the minor axis of exit surface ellipse (Minor axis plane).  相似文献   

5.
Parametric study on the fuel film breakup of a cold start PFI engine   总被引:3,自引:0,他引:3  
In order to provide more insight on improving the cold start fuel atomization for reducing unburned hydrocarbon emissions, the liquid fuel film breakup phenomenon in the intake valve/port region was investigated in depth for port-fuel-injected engines. Experiments were conducted using high-speed high-resolution imaging techniques to visualize the liquid film atomization and airflow patterns in an axisymmetric steady flow apparatus. The impact of valve/port seat geometry, surface roughness, and fuel properties on airflow separation and fuel film breakup were determined through a parametric study. CFD simulations were also performed with FLUENT to help understand the airflow behavior inside the intake port and valve gap region and its potential impact on fuel film atomization.  相似文献   

6.
At low Weber numbers, the aerodynamic forces due to the interaction between gas and liquid do not influence liquid atomization processes. In these situations, atomization processes depend on issuing liquid flow characteristics only. According to the literature, the atomization efficiency is best when the issuing liquid flow shows a high turbulence level. Some injectors are based on this concept and promote the production of turbulence by imposing deflection of the flow inside the nozzle. However, many studies indicate that the level of turbulence does not solely control the atomization efficiency. By conducting a numerical and experimental study on the behavior of cavity nozzles, it is found that internal flow deflection to produce turbulence also produces a non-axial flow component at the nozzle exit whose effect on the atomization process is of paramount importance. Indeed, the results show that the surface energy produced during the atomization process is linearly dependent on the sum of the turbulent kinetic energy and the non-axial kinetic energy at the nozzle exit. This sum represents the energy available for the atomization process, and the influence of the injection pressure as well as of the nozzle geometry on this energy is investigated.  相似文献   

7.
Cavitation plays an important role in fuel atomization mechanisms, but the physics of cavitation and its impact on spray formation and injector efficiency are not well documented yet. Experimental investigations are required to support the development and the validation of numerical models and the design of tomorrow??s injectors, in the context of pollutant and fuel consumption reduction. The complexity of modern injectors and the extreme conditions of injection do not facilitate experimental investigations. In this paper, experiments are conducted in a simplified geometry. The model nozzle consists of a transparent 2D micro-channel supplied with a test oil (ISO 4113). Three different optical techniques are proposed to investigate the channel flow, with the pressure drop between upstream and downstream chambers as a parameter. A shadowgraph-like imaging technique allows the observation of cavitation inception and vapor cavities development throughout the channel. The technique also reveals the presence of density gradients (pressure or temperature) in the channel flow. However, this additional information is balanced by difficulties in image interpretation, which are discussed in the paper. In addition, a combination of Schlieren technique and interferometric imaging is used to measure the density fields inside the channel. The three techniques results are carefully analyzed and confronted. These results reveal a wealth of information on the flow, with pressure waves generated by bubble collapses, turbulence in the wake of vapor cavities and bubble survival in flow regions of high pressure. Our results also show that cavitation inception is located in the shear layers between the recirculation zones and the main flow, relatively far from the inlet corner, where the pressure is minimum in average. To explain this behavior, we propose a scenario of cavitation inception based on the occurrence and the growing of instabilities in the shear layers.  相似文献   

8.
Thermal effects on internal combustion engines have been always a hot topic. Its effects also on the injection system are still under research. In this work, a homogeneous model called Eulerian Spray Atomization (ESA) model is used to simulate Engine Combustion Network (ECN) Spray A conditions. A new approach is used for the thermodynamic model in Diesel spray simulations. Experimental values of the liquid enthalpy are directly used to obtain the temperature, without any need of knowing its heat capacity. This allows to accurately study heating and cooling phenomena inside the Diesel nozzle. The results show that two different boundary conditions can be applied at nozzle walls, either fixed temperature or adiabatic walls, and obtain good prediction of injection parameters. Also, the effect of fuel temperature has been investigated. For Spray A conditions, nozzle and spray parameters are the same regardless the fuel temperature, but fluid properties inside the nozzle (density, velocity...) significantly change.  相似文献   

9.
阎凯  宁智  吕明  孙春华  付娟  李元绪 《力学学报》2016,48(3):566-575
压力旋流喷嘴被广泛应用于航空发动机、船用发动机、车用汽油缸内直喷发动机、燃气轮机等动力机械的燃油喷射系统中.以压力旋流喷嘴射流为研究对象,开展了圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性问题研究.对于液体射流,以往的研究往往对破碎液滴粒径数量密度分布或速度数量密度分布进行单独研究,对于这两种数量密度分布之间关系的研究较少;从相关性的角度对圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布之间的关系进行研究.采用最大熵原理方法建立了圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数.对圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数进行了讨论,对圆环旋转黏性液体射流破碎液滴粒径数量密度分布与速度数量密度分布的相关性问题进行了研究.研究结果表明,为了给出正确的圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数,射流守恒约束条件中必须同时包括质量守恒定律、动量守恒定律以及能量守恒定律;破碎液滴粒径的数量密度分布与速度数量密度分布密切相关;射流旋转强度对破碎液滴粒径数量密度与速度数量密度分布结构影响不大,对破碎液滴粒径数量密度和速度数量密度的分布区域影响较大.   相似文献   

10.
Performance of internal combustion engines is well known being greatly affected by the air-fuel mixture formation process. In spark ignition engines, in particular, the gasoline direct injection (GDI) technology is currently preferred, as it allows obtaining the desired air-to-fuel ratio distribution at each regime of operation, either by creating stoichiometric mixtures under high power demands, or through charge stratification around the spark plug at intermediate or lower loads. The impact of the gasoline spray on the piston or cylinder walls is a key factor, especially under the so-called wall-guided mixture formation mode. The impact causes droplets rebound and/or the deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm, on the other hand, may remain of no negligible size and evaporate slowly, leading to increased unburned hydrocarbons and particulate matter emissions.Optimization of the heterogeneous mixture behavior in GDI engines is fundamental for guaranteeing high energetic and environmental performance over the whole working map. Computational fluid dynamics (CFD) can be useful in this perspective to effect proper choices of control strategies. Assessment of predictive engine models, able to describe the complex phenomena underlying energy conversion in modern engines, is therefore mandatory to the scope.In the present paper, a basic study is performed on gasoline sprays issuing from high pressure injectors under controlled conditions: the experimental characterization of multi-hole and single-hole GDI sprays in their impact over a plate is carried out with the aim of creating a set of data to be used for the validation of a properly developed simulation model. The multi-hole spray allows accounting for the jet-to-jet interaction and represents a condition closer to the actual gasoline supply mode in present GDI engines. The single-hole injector configuration is instead preferred for a more detailed study, as it allows capturing effects related to the role that diverse parameters characterizing the liquid droplet dynamics play during and after their impingement on heated solid surfaces. The CFD model is conceived with the scope of its future application within numerical calculations of entire engine working cycles. A highly portable free spray sub-model allows correctly reproducing the injection dynamics under different conditions in a confined vessel, while the spray-wall impingement sub-model is shown being able to highlight to an acceptable extent the gasoline splashing and deposition phenomena.  相似文献   

11.
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.  相似文献   

12.
Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling. In addition, high-speed images of single droplets of fuel impinging onto the array of the heat flux sensor were acquired with simultaneous sampling of the heat flux signal in an attempt to provide further interpretation. The single droplet tests showed ability of the signals to quantify droplet mass impinged on the sensor. Analysis of the peak heat flux at static engine conditions quantified values of fuel temperature at impingement in agreement with the wet bulb temperatures predicted by the droplet evaporation model. Comparison of the static and motoring engine heat flux signals around the bore showed the effect of the intake flow on the spray’s pattern at impingement and demonstrated fuel presence on the liner that survived at exhaust valve open timing. The general behaviour was different for the alcohols to that of the hydrocarbons, with ethanol exhibiting the effect of its high latent heat on the signals and butanol exhibiting effects related to poor atomization and slow evaporation.  相似文献   

13.
In this study, theoretical analyses have been performed to investigate the effects of atomizer construction and controlled pressure difference of swirl atomizers. The analysis of fluid field in the swirl chamber is governed by mass/energy conservation rules; in the region outside the nozzle, the analysis of oscillation of liquid sheet is based on Squire’s expression for the amplitude growth rate. With some physical assumptions of control volume, initial values and model correlation, analytical results make it possible to predict film thickness, velocity distribution, spray cone angle and droplet size directly. The distribution of velocity profile and boundary layer thickness in the swirl chamber have been established with the aid of MATLAB. Based on the results we obtained, we here propose the change of individual design parameter and its corresponding flow number to optimize the performance of swirl atomizers.  相似文献   

14.
A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry. Transient needle lift and wobble were based upon ensemble averaged X-ray imaging preformed at Argonne National Lab. The minimum needle lift simulated was 5 µm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actuate the injection. Low needle lift is shown to result in vapor generation near the injector seat. Finally, the internal injector flow is shown to be highly complex, containing many transient and interacting vortices which result in perturbations in the spray angle and fluctuations in the mass flux. This complex internal flow also results in intermittent string flash-boiling when a strong vortex is injected and the resulting swirling spray contains a thermal non-equilibrium vapor core.  相似文献   

15.
This study is based on dynamic mesh refinement and uses spray breakup models to simulate engine spray dynamics. It is known that the Lagrangian discrete particle technique for spray modeling is sensitive to gird resolution. An adequate spatial resolution in the spray region is necessary to account for the momentum and energy coupling between the gas and liquid phases. This study uses a dynamic mesh refinement algorithm that is adaptive to spray particles to increase the accuracy of spray modeling. On the other hand, the accurate prediction of the spray structure and drop vaporization requires accurate physical models to simulate fuel injection and spray breakup. The present primary jet breakup model predicts the initial breakup of the liquid jet due to the surface instability to generate droplets. A secondary breakup model is then responsible for further breakup of these droplets. The secondary breakup model considers the growth of the unstable waves that are formed on the droplet surface due to the aerodynamic force. The simulation results are compared with experimental data in gasoline spray structure and liquid penetration length. Validations are also performed by comparing the liquid length of a vaporizing diesel spray and its variations with different parameters including the orifice diameter, injection pressure, and ambient gas temperature and density. The model is also applied to simulate a direct-injection gasoline engine with a realistic geometry. The present spray model with dynamic mesh refinement algorithm is shown to predict the spray structure and liquid penetration accurately with reasonable computational cost.  相似文献   

16.
A density-based solver with the classical fourth-order accurate Runge-Kutta temporal discretization scheme was developed and applied to study under-expanded jets issued through millimetre-size nozzles for applications in high-pressure direct-injection (DI) gaseous-fuelled propulsion systems. Both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) turbulence modelling techniques were used to evaluate the performance of the new code. The computational results were compared both quantitatively and qualitatively against available data from the literature. After initial evaluation of the code, the computational framework was used in conjunction with RANS modelling (k-ω SST) to investigate the effect of nozzle exit geometry on the characteristics of gaseous jets issued from millimetre-size nozzles. Cylindrical nozzles with various length to diameter ratios, namely 5, 10 and 20, in addition to a diverging conical nozzle, were studied. This study is believed to be the first to provide a direct comparison between RANS and LES within the context of nozzle exit profiling for advanced high-pressure injection systems with the formation of under-expanded jets. It was found that reducing the length of the straight section of the nozzle by 50% resulted in a slightly higher level of under-expansion (∼2.6% higher pressure at the nozzle exit) and ∼1% higher mass flow rate. It was also found that a nozzle with 50% shorter length resulted in ∼6% longer jet penetration length. At a constant nozzle pressure ratio (NPR), a lower nozzle length to diameter ratio resulted in a noticeably higher jet penetration. It was found that with a diverging conical nozzle, a fairly higher penetration length could be achieved if an under-expanded jet formed downstream of the nozzle exit compared to a jet issued from a straight nozzle with the same NPR. This was attributed to the radial restriction of the flow and consequently formation of a relatively smaller reflected shock angle. With the conical nozzle used in this study and a 30 bar injection pressure, an under-expanded hydrogen jet exhibited ∼60% higher penetration length compared to an under-expanded nitrogen jet at 100 μs after start of injection. Moreover, the former jet exhibited ∼22% higher penetration compared to a nitrogen jet issued through the conical profile with 150 bar injection pressure.  相似文献   

17.
Liquid film break-up in a model of a prefilming airblast nozzle   总被引:4,自引:0,他引:4  
 The paper describes the atomisation process of a liquid in an axissymmetric shear layer formed through the interaction of turbulent coaxial jets (respectively, inner and outer jets), with and without swirl, in a model airblast prefilming atomiser. The atomisation process and spray quality was studied using different visualisation techniques, namely laser shadowgraphy and digital image acquisition. The experiments were conducted for different liquid flow rates, Reynolds numbers ranging from 6600 to 66000 and 27300 to 92900 for the inner and outer air flows, respectively, for different outer flow swirl levels, and two liquid film thicknesses −0.2 and 0.7 mm. All the tests were carried out at atmospheric pressure and using water. The results include the analysis of the film structure at break-up and of the break-up length, and suggest that the deterioration of the liquid film close to the atomising edge exhibits a periodic behaviour and is mainly dependent on the inner air velocity. Film thickness strongly affects the time and length scales of the break-up process for the lower range of air velocities. For higher inner air velocities, the break-up length and time become less dependent on liquid flow rate and initial film thickness. Received: 14 March 1997/Accepted: 27 October 1997  相似文献   

18.
Theoretical and experimental studies have been made to investigate the variations of air core diameter, the most important hydrodynamic picture inside a swirl nozzle, with the pertinent guiding parameters like injection condition expressed as the Reynolds number at inlet to the nozzle and the geometrical dimensions of the nozzle, namely, the length and diameter of the swirl chamber, angle of spin chamber and the orifice diameter. The theoretical relations have been established through an approximated analytical solution of the hydrodynamics of flow of a viscous incompressible fluid in a swirl nozzle. A series of experiments have been carried out to support and compare the theoretical results. Finally, it has been recognized that for any nozzle, the air core diameter becomes a direct function of Reynolds number Re i at inlet to the nozzle only at its lower range and then remains constant. Amongst the nozzle geometrics, the ratio of orifice to swirl chamber diameter D 2/D 1 has got the most predominant effect on the air core diameter. An increase in the ratio of orifice to swirl chamber diameter D 2/D 1, and in the spin chamber angle 2 and a decrease in the swirl chamber length to diameter ratio L 1/D 1 increase the ratio of air core to orifice diameter and vice versa.Nomenclature A E Area of tangential inlet ports of the nozzle - A 2 Area of the orifice - a Air core radius - D 1 Swirl chamber diameter - D 2 Orifice diameter - d 2 Air core diameter - E A nondimensional parameter defined by equation (14) - E R A nondimensional parameter defined by equation (33) - L 1 Length of the swirl chamber - P Static pressure - P b Back pressure of the nozzle - Q Volume flow rate - R Radius vector or the longitudinal co-ordinate with respect to spherical co-ordinate system (figure 3) - R 1 Radius of the swirl chamber - R 2 Radius of the orifice - Re i Reynolds number at inlet to the nozzle - R z Radius of the nozzle at any section - r Radial distance from the nozzle axis - U Longitudinal component of velocity with respect to spherical co-ordinate system (figure 3) - V Component of velocity in the axial plane perpendicular to R as defined in (figure 3) - V r Radial velocity component - V z Axial velocity component - V Ø Tangential velocity component - Average tangential velocity at inlet to the nozzle - w Component of velocity perpendicular to axial plane with respect to the spherical co-ordinate as defined in figure 3 - z Distance along the nozzle axis from its inlet plane - Half of the spin chamber angle - Boundary layer thickness - 2 Boundary layer thickness at the orifice - Angle which a radius vector according to the system of spherical coordinates (figure 3) makes with the nozzle axis - Dynamic viscosity - Kinematic viscosity - Density - Ø Running co-ordinate in the azimuthal direction with respect to the cylindrical polar co-ordinate system as shown in figure 3 - Circulation constant  相似文献   

19.
The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (Cd), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1  Cd2) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified.  相似文献   

20.
Compressible swirling flow through convergent-divergent nozzles   总被引:1,自引:0,他引:1  
The effects of swirl on the rate of mass flow and on the velocity field in the throat region of axi-symmetric nozzles are studied analytically and experimentally. In the analytical phase, methods are developed for treating either the direct or the inverse problem for flow in de Lavai and annular nozzles, taking account of either weak or strong swirl. The experiments were performed in an annular nozzle, with swirl being imparted to the flow by adjustable vanes situated upstream of the test section. The analytical results facilitated an examination of the effects of swirl strength, distribution of swirl, and nozzle geometry. The rate of mass flow was found to decrease with increasing swirl strength. The mass flow results were well correlated by a swirl strength parameter evaluated at the throat, with swirl type and geometry being of secondary importance. Another effect of swirl was to shift the sonic line upstream of the geometric nozzle throat. The experimentally determined mass flow results were in agreement with the analytical predictions. Also, all of the qualitative characteristics of the local flow field measurements were reproduced by the analytical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号