首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured tunnel conductance of spin-triplet superconductor Sr2RuO4 (SRO) break junction which was made by micro fabrication technique with a focused ion beam. This is a new type of tunnel junctions made of SRO, which is different from those made of SRO and other materials. Since the tunnel conductance is sensitive to the internal phase of superconductivity, it enables us to examine the chiral p-wave pairing state, which is the most probable candidate of SRO. The tunnel conductance spectrum of the junction showed a broad zero-bias conductance peak whose shape is different from that of high-Tc cuprate superconductors. The shape of the spectrum is in quite good agreement with the calculated spectrum of a chiral p-wave/insulator/normal metal junction.  相似文献   

2.
fine structure was observed in the conductance curve of a tunneling junction composed of a single crystalline Bi2212 and an evaporated SnO2 film. It is similar to those of Bi2212-GaAs mechanical junctions and there is a certain correspondence between the structure and the phonon density of states. Thus the previous conclusion that the structure is due to phonons has been complemented by this work. The energy gap 2 was 57 meV at 13 K and T c was 78 K. 2(0)/k B T c is then 8.3. (T) showed the BCS-like temperature dependence.  相似文献   

3.
4.
We present the temperature dependence of the thermal conductivity kappa(T) of the unconventional superconductor Sr2RuO4 down to low temperatures ( approximately 100 mK). In the T-->0 K limit we found a finite residual term in kappa/T, providing clear evidence for the superconducting state with an unconventional pairing. The residual term remains unchanged for samples with different T(c), demonstrating the universal character of heat transport in this spin-triplet superconductor. The low-temperature behavior of kappa suggests the strong impurity scattering with a phase shift close to pi/2. A criterion for the observation of universality is experimentally deduced.  相似文献   

5.
Multiband quasiparticle calculations based on perturbation theory and dynamical mean-field methods show that the creation of a photoemission hole state in Sr2RuO4 is associated with a highly anisotropic self-energy. Since the narrow Ru-derived d(xz,yz) bands are more strongly distorted by Coulomb correlations than the wide d(xy) band, charge is partially transferred from d(xz,yz) to d(xy), thereby shifting the d(xy) Van Hove singularity close to the Fermi level.  相似文献   

6.
The dependence of in-plane and interplane thermal conductivities of Sr2RuO4 on temperature, as well as magnetic field strength and orientation, is reported. We found no notable anisotropy in the thermal conductivity for the magnetic field rotation parallel to the conducting plane in the whole range of experimental temperatures and fields, except in the vicinity of the upper critical field H(c2), where the anisotropy of the H(c2) itself plays a dominant role. This finding imposes strong constraints on the possible models of superconductivity in Sr2RuO4 and supports the existence of a superconducting gap with a line of nodes running orthogonal to the Fermi surface cylinder.  相似文献   

7.
Recently experiments and theories show that the tunnel magnetoresistance (TMR) does not only depend on the ferromagnetic metal electrodes but also on the insulator. Considering the rough-scattering effect and spin-flip effect in the insulator, this paper investigates the TMR ratio in a ferromagnet/insulator/ferromagnet (FM/I/FM) tunnelling junction by using Slonczewsik's model. A more general expression of TMR ratio as a function of barrier height, interface roughness and spin-flip effect is obtained. In lower barrier case, it shows that the TMR ratio depends on the roughscattering effect and spin-flip effect.  相似文献   

8.
We present a general formula for tunneling conductance in ballistic ferromagnet/ferromagnetic insulator/superconductor junctions where the superconducting state has the opposite spin pairing symmetry. The formula shows, correctly, that ferromagnetism has been induced by the effective mass difference between up- and down-spin electrons. This effectively mass mismatched ferromagnet and a standard Stoner ferromagnet have been employed in this paper. As an application of the formulation, we have studied the tunneling effect for junctions including a spin-triplet p-wave superconductor, where we choose a normal insulator for the insulating region, although our formula can be used for a ferromagnetic insulator. Then, we have been able to devote our attention to features of a ferromagnetic metal. The conductance spectra show a clear difference between the two ferromagnets depending upon the method of normalization of the conductance. In particular, an essential difference is seen in the zero-bias conductance peaks, reflecting the characteristics of each ferromagnet. From the obtained results, we suggest that the measurements of the tunneling conductance in the junction provide us with useful information about the mechanism of itinerant ferromagnetism in metals.  相似文献   

9.
10.
We investigate the tunneling conductance on the surface of topological insulator ferromagnet (F)/insulator (I)/superconductor (S) junction where superconducting type is either s- or d-wave paring. Topological insulators (TI) are insulating in bulk but conducting on the surface with the Dirac-fermion-like carriers. In contrast to the Dirac fermions in graphene, relativistic mass of the Dirac fermions in TI can be easily caused by applying magnetic field perpendicular to its surface. In this work, we emphatically focus on the effect of the magnetically-induced relativistic mass on the tunneling conductance of a TI-based F/I/S junction. We find that, due to the effect of spinless fermions as carriers in TI, the behavior of the tunneling conductance in a TI-based NIS junction resembles that in a nonmagnetic graphene-based NIS junction. In case of the d-wave paring F/I/S junction, increasing magnetically-induced relativistic mass changes the zero bias conductance dip (peak) to a zero bias conductance peak (dip). This behavior cannot be observed in a graphene-based F/I/S junction.  相似文献   

11.
12.
Helical edge states exist in the mixed spin-singlet and spin-triplet phase of a noncentrosymmetric (NCS) superconductor [Y. Tanaka, T. Yokoyama, A.V. Balatsky, N. Nagaosa, Phys. Rev. B 79, 060505(R) (2009)]. In this article we have considered a planar ferromagnetic metal/NCS superconductor tunnel junction and have studied the effect of these helical edge states which manifests itself through the charge and spin tunneling conductance across the junction. We have shown the behavior of conductance for the entire range of variation of γ = Δ -/Δ + where Δ ± are the order parameters in the positive and negative helicity bands of the NCS superconductor. There exists a competition between the Rashba parameter α and the exchange energy E ex which is crucial for determining the variation of the conductance with the applied bias voltage across the junction. We have found a nonzero spin current across the junction which appears due to the exchange energy in the Ferromagnet and modulates with the bias voltage. It also changes its profile when the strength of the exchange energy is varied.  相似文献   

13.
We have observed cyclotron resonance in the layered perovskite superconductor Sr2RuO4. We obtain cyclotron masses for the alpha, beta, and gamma Fermi surfaces of (4.33+/-0.05)m(e), (5.81+/-0. 05)m(e), and (9.71+/-0.2)m(e), respectively. The appreciable differences between these results and those obtained from de Haas-van Alphen measurements are attributable to strong electron-electron interactions in this system. Our findings appear to be consistent with predictions for an interacting Fermi liquid; indeed, semiquantitative agreement is obtained for the electron pockets beta and gamma.  相似文献   

14.
A generalized t-J-I-model is proposed for Sr2RuO4 that takes the strong intra-atomic correlations of the d electrons and the features of the electronic structure of Sr2RuO4 into account. It is shown that, in the limit of strong correlations, there are no singlet s-type solutions for the superconducting state, but triplet solutions exist because of ferromagnetic spin correlations. For typical values of the model parameters, T c ∼1 K, consistent with the value of T c for Sr2RuO4. Fiz. Tverd. Tela (St. Petersburg) 41, 1936–1938 (November 1999)  相似文献   

15.
We apply a novel analysis of the field and angle dependence of the quantum-oscillatory amplitudes in the unconventional superconductor Sr2RuO4 to map its Fermi surface (FS) in unprecedented detail and to obtain previously inaccessible information on the band dispersion. The three quasi-2D FS sheets not only exhibit very diverse magnitudes of warping, but also entirely different dominant warping symmetries. We use the data to reassess recent results on c-axis transport phenomena.  相似文献   

16.
We report that the quasi-two-dimensional Fermi-liquid behavior of the spin-triplet superconductor Sr2RuO4 breaks down in the vicinity of the critical impurity concentration for the onset of magnetic order induced by nonmagnetic Ti4+ impurities. The non-Fermi-liquid behavior is interpreted in terms of the two-dimensional antiferromagnetic fluctuations, which arise mainly from the nesting within one of the Fermi-surface sheets. We argue against the main role of such magnetic fluctuations in the pairing mechanism.  相似文献   

17.
We have used angle-resolved photoemission spectroscopy to determine the bulk electronic structure of Sr(2)RuO(4) above and below the Fermi liquid crossover near 25 K. Our measurements indicate that the properties of the system are highly orbital dependent. The quasi-2D gamma band displays Fermi liquid behavior while the remaining low energy bands show exotic properties consistent with quasi-1D behavior. In the Fermi liquid state below 25 K, the gamma band dominates the electronic properties, while at higher temperatures the quasi-1D beta and alpha bands become more important.  相似文献   

18.
We report a study of the magnetization density in the mixed state of the unconventional superconductor Sr2RuO4. On entering the superconducting state we find no change in the magnitude or distribution of the induced moment for a magnetic field of 1 T applied within the Ru O2 planes. Our results are consistent with a spin-triplet Cooper pairing with spins lying in the basal plane. This is in contrast with similar experiments performed on conventional and high- T(c) superconductors.  相似文献   

19.
The tunneling conductance on the surface of a topological-insulator-based ferromagnet/superconductor (F/S) structure is studied where S is an s-wave superconductor with superconducting order parameter ∼Δ. The conductance is calculated based on the BTK formalism. The magnetization in F is applied along the z-direction () in order to induce the energy-mass gaps (m) for the Dirac electrons in the F-region. In this work, the influence of energy gap due to the magnetic field in the F-region on the conductance is emphasized. The Fermi energy mismatch between F (EFF=EF) and S (EFS=EF+U), where the gate potential U is applied to the electrode on top of S, is also considered. As a result, a biased voltage V can cause the conductance switch at eV=Δ, depending on the value of the magnetic field. The conductance is found to be linearly dependent on either m or U. The slope of the curve can also be adjusted. This linear behavior in a topological-insulator-based F/S structure may be valuable for electronic applications of the linear-control-current devices. The tunneling conductances of the quasi-Dirac-particle in a topological-insulator-based F/S junction are quite different from those of a graphene-based F/S junction.  相似文献   

20.
We present a first-principles study of spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. For nearly degenerate bands, spin-orbit coupling leads to a dramatic change of the Fermi surface with respect to nonrelativistic calculations; as evidenced by the comparison with experiments on Sr2RhO4, it cannot be disregarded. For Sr2RuO4, the Fermi surface modifications are more subtle but equally dramatic in the detail: Spin-orbit coupling induces a strong momentum dependence, normal to the RuO2 planes, for both orbital and spin character of the low-energy electronic states. These findings have profound implications for the understanding of unconventional superconductivity in Sr2RuO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号