首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two different wet sewage sludges have been characterized under fluidized bed combustion conditions with reference to their devolatilization behavior and ash comminution with the aid of different and complementary experimental protocols. Analysis of the devolatilization process allowed to determine the size of fuel particle able to achieve effective lateral spreading of the volatile matter across the cross-section of medium-scale combustors. Primary fragmentation and primary ash particle characterization pointed out the formation of a significant amount of relatively large fragments. The mechanical properties of these fragments have been characterized by means of elutriation/abrasion tests using both quartz and sludge ash beds.  相似文献   

2.
The dispersion characteristics of fuel particles in the dense phase zone in circulating fluidized bed (CFB) boilers have an important influence on bed temperature distribution and pollutant emissions. However, previous research in literature was mostly on small-scale apparatus, whose results could not be applied directly to large-scale CFB with multiple dispersion sources. To help solve this problem, we proposed a novel method to estimate the lateral dispersion coefficient (Dx) of fuel particles under partial coal cut-off condition in a 350 MW supercritical CFB boiler based on combustion and dispersion models. Meanwhile, we carried out experiments to obtain the Dx in the range of 0.1218–0.1406 m2/s. Numerical simulations were performed and the influence of operating conditions and furnace structure on fuel dispersion characteristics was investigated, the simulation value of Dx was validated against experimental data. Results revealed that the distribution of bed temperature caused by the fuel dispersion was mainly formed by char combustion. Because of the presence of intermediate water-cooled partition wall, the mixing and dispersion of fuel and bed material particles between the left and right sides of the furnace were hindered, increasing the non-uniformity of the bed temperature near furnace front wall.  相似文献   

3.
We performed an experimental study to investigate the effects of various parameters on the attrition of bed material and its size distribution with increasing operation time in a recirculating fluidized bed (RCFB). The studied parameters included superficial velocity of fluidizing air, bed inventory, and spacing between the jet top and draft tube bottom (spacer height). The bed material was prepared from Indian Standard (IS) Grade I sand from sieves with a size range of 2.20–1.00 mm. Experiments were performed at ambient conditions, with the superficial air velocity ranging from 7.13–9.16 m/s, a bed inventory of 7–10 kg, spacing of 0.085 and 0.045 m between the jet top and draft tube bottom, and an operating time of 40 h. We investigated the influence of these parameters in terms of changes in the size distribution of particles, changes in the %-weight of particles of different size ranges, generation of particles with smaller diameters, the decrease of the downcomer bed height, variations in the coefficient of uniformity and coefficient of curvature, and material loss from entrainment of fines with increasing operation time. The mode of attrition was abrasion in all experiments. We found that with increasing operation time and other parameters (bed inventory, superficial air velocity, and spacer height) attrition of the bed material also increased. Generation and elutriation of fines were more pronounced at higher superficial air velocity, bed inventory, and spacer height.  相似文献   

4.
The aim of this study is composed of two parts. One of them is to calculate the radiation heat flux and the other is to determine the overall heat transfer coefficient for the gas-fluidized bed. The radiative heat transfer model is developed for predicting the total heat transfer coefficients between submerged surfaces and fluidized beds for several working temperatures. The role of radiation heat transfer in the overall heat transfer process at an immersed surface in a gas-fluidized bed at high temperatures is investigated. Analytical results are compared with the previously done experiments and a good agreement between the two, is obtained.
Bestimmung der Wärmeübertragungs-Koeffizienten in Gas-Wirbelschichten
Zusammenfassung Diese Untersuchung besteht aus folgenden zwei Teilen: 1. Kalkulation des Radiationswärmeübergangs in Gas-Wirbelschichten. 2. Bestimmung des Wärmeübergangs-Koeffizienten in Gas-Wirbelschichten. Dieses Radiationswärmeübergangsmodell wurde entwickelt, um die Wärmeübertragungs-Koeffizienten zwischen der eingetauchten Oberfläche und der Wirbelschicht bei verschiedener Wärme schätzungsweise zu bestimmen. Es wurde das Verhältnis der Radiationswärmeübertragung in Gas-Wirbelschichten zum totalen Wärmeübergang untersucht. Die Meßwerte wurden mit theoretischen Resultaten verglichen.

Nomenclature c (x) specific heat capacity of packet [J/kg K] - c p specific heat capacity of particle [J/kg K] - c pg specific heat capacity of gas [J/kg K] - d p average diameter of the bed particles [m] - f 0 the fraction of time that a unit surface exposed to the bubble phase - 1–f 0 the fraction of time that a unit surface exposed to the packet phase - g acceleration due to gravity [m/s2] - h b heat transfer coefficient for the surface in contact with bubble [W/m2 K] - h bc conduction heat transfer coefficient for the surface/bubble [W/m2K] - h br radiation heat transfer coefficient for the surface/bubble [W/m2K] - h p heat transfer coefficient for the surface in contact with packet [W/m2K] - h pc conduction heat transfer coefficient for the surface/packet [W/m2 K] - h pr radiation heat transfer coefficient for the surface/packet [W/m2 K] - h T total heat transfer coefficient between bed and surface [W/m2 K] - k 0 thermal conductivity of the emulsion phase for fixed bed [W/m K] - k(x) thermal conductivity of packet [W/m K] - k e the logarithmic mean of conductivity for first layer in packet [W/m K] - k g the logarithmic mean of conductivity for the first layer in packet [W/m K] - K extinction coefficient [1/m] - m mass [kg] - n number of layers - p air pressure [pa] - q pc mean local conduction heat transfer for packet [kW/m2] - q pr mean local radiation heat transfer for packet [kW/m2] - Q p average heat flux during packet contact with surface [kW/m2] - Q b average heat flux during bubble contact with surface [kW/m2] - R gas constant [287.04 J/kg K] - t time [s] - t g residence time for gas bubble [s] - t k residence time for packet [s] - T temperature [K] - T b bed temperature [K] - T W surface temperature [K] - V mf minimum fluidization velocity [m/s] - v t terminal velocity [m/s] - x distance [m] Greek symbols t time increment - x thickness of the layer - emissivity - thermal diffusivity [m2/s] - (x) voidage of fluidized bed - mf void ratio of the bed at minimum fluidization - 0 voidage of fixed bed - g dynamic viscosity of gas [kg/m s] - g kinematic viscosity of gas [m2/s] - (x) density of packet [kg/m3] - p density of particles [kg/m3] - g density of gas [kg/m3] - Stefan-Boltzmann constant [5.66·10–8 W/m2K4] - geometric shape factor for particles Dimensionless numbers Ar Archimedes numberAr=g d p 3 ( p g ) g / g 2 - Nu Nusselt numberNu=h·d/k - Re Reynolds numberRe=d p ·V mf / g - Pr Prandtl numberPr=C pg g /k g   相似文献   

5.
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed. The dimensions of the bed and other parameters are set to correspond to those of Müller et al. (2008). Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures. Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics. It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature, particle translational granular temperature and particle rotational granular temperature. The drag force model affects more seriously the large scale variables such as the bubble granular temperature. Restitution coefficient influences all granular temperatures to some degree. Simulation results are compared with experimental results by Müller et al. (2008) showing reasonable agreement.  相似文献   

6.
In this work, a discrete particle model (DPM) was applied to investigate the dynamic characteristics in a gas–solid bubbling fluidized bed of binary solid particles. The solid phase was simulated by the hard-sphere discrete particle model. The large eddy simulation (LES) method was used to simulate the gas phase. To improve the accuracy of the simulation, an improved sub-grid scale (SGS) model in the LES method was also applied. The mutative Smagorinsky constant case was compared with the previously published experimental data. The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model. Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles. The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

7.
In this work,a discrete particle model(DPM) was applied to investigate the dynamic characteristics in a gas-solid bubbling fluidized bed of binary solid particles.The solid phase was simulated by the hardsphere discrete particle model.The large eddy simulation(LES) method was used to simulate the gas phase.To improve the accuracy of the simulation,an improved sub-grid scale(SGS) model in the LES method was also applied.The mutative Smagorinsky constant case was compared with the previously published experimental data.The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model.Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles.The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

8.
The constantly developing fiuidized combustion technology has become competitive with a conventional pulverized coal (PC) combustion. Circulating fluidized bed (CFB) boilers can be a good alternative to PC boilers due to their robustness and lower sensitivity to the fuel quality. However, appropriate engineering tools that can be used to model and optimize the construction and operating parameters of a CFB boiler still require development. This paper presents the application of a relatively novel hybrid Euler-Lagrange approach to model the dense gas-solid flow combined with a combustion process in a large-scale indus- trial CFB boiler. In this work, this complex flow has been resolved by applying the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) code. To accurately resolve the multiphase flow, the original CFD code has been extended by additional user-defined functions. These functions were used to control the boiler mass load, particle recirculation process (simplified boiler geometry), and interphase hydrodynamic properties. This work was split into two parts. In the first part, which is referred to as pseudo combustion, the combustion process was not directly simulated. Instead, the effect of the chemi- cal reactions was simulated by modifying the density of the continuous phase so that it corresponded to the mean temperature and composition of the flue gases, In this stage, the particle transport was simu- lated using the standard Euler-Euler and novel hybrid Euler-Lagrange approaches, The obtained results were compared against measured data, and both models were compared to each other. In the second part, the numerical model was enhanced by including the chemistry and physics of combustion. To the best of the authors' knowledge, the use of the hybrid Euler-Lagrange approach to model combustion is a new engineering application of this model, In this work, the combustion process was modeled for air-fuel combustion. The simulation results were compared with experimental data.  相似文献   

9.
A study is made of the propagation of nonlinear kinematic waves of concentrations of solid particles in a fluidized bed of particles of two different sizes. A hyperbolic system of quasilinear equations is obtained which describes the propagation of the waves. A dependence of the characteristic velocities on the concentrations of the phases and the ratio of the sizes of the particles is found. The influence of an admixture of fine particles on the propagation of porosity waves in the fluidized bed is analyzed. The nature of the formation of jumps in the porosity depending on the concentration of the admixture is studied, as is the process of the transfer of the admixture of fine particles in the bed. The nature of the propagation of nonlinear waves in a fluidized bed of identical particles is clarified. A characteristic velocity is found and conditions are determined for the formation of discontinuities of concentration of the dispserse phase in rarefaction compression waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 49–58, January–February, 1985.  相似文献   

10.
Application of the principles of the fluidization is made for cooling towers. The performance on a smaller size Fluidized Bed Cooling Tower (FBCT) is found to be encouraging. Hence a larger size FBCT is designed and the performance is found to be equally good. The pressure drop encountered in FBCT is comparable to that of conventional cooling towers. The packing height in FBCT reduces considerably because of fluidization. A table is provided to show that the throughput of the FBCT is greater than that of conventional cooling towers.
Der Einfluß der Größe auf die Leistung eines Wirbelschicht-Kühlturms
Zusammenfassung Das Prinzip der Fluidisierung wird für Kühltürme eingesetzt. Die Leistung eines Wirbelschicht-Kühlturms mit geringer Größe ist als ermutigend angesehen worden. Deshalb wurde ein größerer Wirbelschicht-Kühlturm entwickelt, dessen Leistung ebenso gut eingestuft wurde. Der Druckverlust, der in einem Wirbelschicht-Kühlturm auftritt, ist mit dem Druckverlust in einem konventionellen Kühlturm vergleichbar. Die Packungshöhe in einem Wirbelschicht-Kühlturm verringert sich aufgrund der Fluidisierung wesentlich. In einer Tabelle wird gezeigt, daß die Durchflußleistung eines Wirbelschicht-Kühlturms erheblich größer ist, als bei konventionellen Kühltürmen.

Nomenclature L water flow rate, kg per hour/m2 - K overall enthalpy transfer coefficient, kg per hour/m2 - V active tower volume, m3/m2 plan area - T i cold water temp. deg. C - i i enthalpy of the air at the interface, Kcal/kg - G airflow rate, kg per hour/m2 - a area of water interface, m2/m3 - H st static height of packing - T 2 hot water temp. deg. C - i g enthalpy of air, Kcal/kg  相似文献   

11.
In this article, a standard 2D Two-Fluid Model (TFM) closed by the kinetic theory of granular flow (KTGF) has been applied to simulate the behavior of tapered-in and tapered-out fluidized bed reactors. In this regard, two types of chemical reactions with gas volume reduction and increase were considered to investigate the effects of initial static bed height on the fractional conversion and bed pressure drop. To validate the CFD model predictions, the results of hydrodynamic simulations concerning bed pressure drop and bed expansion ratio were compared against experimental data reported in the literature and excellent agreement was observed. The obtained simulation results clearly indicate that there is an appropriate static bed height in a tapered-in reactor in which the fractional conversion becomes maximum at this height; whereas variations of static bed height in a tapered-out reactor have insignificant influences on the fractional conversion. Moreover, it was found that the residence time, temperature, and intensity of turbulence of the gas phase are three important factors affecting the fractional conversion in tapered fluidized bed reactors. In addition, it was observed that increasing the static bed height increases the bed pressure drop for both the tapered-in and tapered-out fluidized bed reactors.  相似文献   

12.
The influence of temperature on crosshatching on ablating cone models made of wax and camphor is studied. Ablation experiments are carried out in supersonic tunnels. The relation between temperature and the wavelength of crosshatching is obtained. The effect of pressure on the wavelength of crosshatching is verified. The influence of temperature and pressure on the initial position of the appearance of crosshatching and on the time required for both the apperance of croosshatching and the formation of stable crosshatching are obtained and analyzed.  相似文献   

13.
14.
In this paper we study the effect of rolling friction on the dynamics in a single spout fluidized bed using Discrete Element Method (DEM) coupled to Computational Fluid Dynamics (CFD). In a first step we neglect rolling friction and show that the results delivered by the open source CFD–DEM framework applied in this study agree with previous simulations documented in literature. In a second step we include a rolling friction sub-model in order to investigate the effect of particle non-sphericity. The influence of particle–particle as well as particle–wall rolling friction on the flow in single spout fluidized bed is studied separately. Adequate rolling friction model parameters are obtained using first principle DEM simulations and data from literature. Finally, we demonstrate the importance of correct modelling of rolling friction for coupled CFD–DEM simulations of spout fluidized beds. We show that simulation results can be improved significantly when applying a rolling friction model, and that experimental data from literature obtained with Positron Emission Particle Tracking (PEPT) technique can be satisfactorily reproduced.  相似文献   

15.
The motion of particles in a solid-liquid fluidized bed was experimentally studied by video tracking of marked particles in a matched refractive index medium. In this study, two fluidized states are compared, one carefully aligned in the vertical direction ensuring a homogeneous fluidisation and another one with a non-homogeneous fluidisation regime that results from a slight tilt of the fluidisation column of 0.3° with respect to the vertical. As a result of the misalignment, large recirculation loops develop within the bed in a well-defined spatial region. It is found that in that range of solid fraction (between 0.3 and 0.4), the inhomogeneous motion of the particles leads to significant differences in velocity fluctuations as well as in self-diffusion coefficient of the particles in the vertical direction, whereas the fluidisation height remains unaffected. At lower (less than 0.2) or higher (higher than 0.5) concentration, particle agitation characteristics are almost unchanged in the vertical direction.  相似文献   

16.
17.
Oxyfuel combustion is a promising alternative for CO2 capture. While this has been proven in pulverized fuel (PF) burners, research in fluidized bed (FB) reactors is still scarce. Our work aims to increase the knowledge about this technology. To this purpose, a 95 kWth FB oxyfuel combustion test rig has been erected. Its main characteristics are described in this paper, giving detailed information on the subsystems: the FB reactor, the fuel and oxidant supplies, and ancillaries. Plant flexibility is emphasized. It allows to operate under different CO2/O2 ratios, and to recycle CO2 from the flue gases. Both the processes design and monitoring are supported by simulations that have been validated against experimental data, regarding fluid dynamics, combustion, and heat transfer. Finally, the performance of the facility has been tested both with coal alone and blended with biomass. CO2 concentrations over 90% (dry basis) in the flue gases have been obtained. Comparison of air and oxygen combustion tests and operational recommendations are discussed, confirming the feasibility of the FB oxyfuel technology for CO2 capture purposes.  相似文献   

18.
In a phreatic aquifer, bubbles may result from the entrapment of air during groundwater recharge and/or bacterial metabolism. The calculated critical depth of about 1 m at which bubbles are most likely to be found in a granular aquifer, coincides with the depth of 0.60 m of an almost stagnant water layer (specific discharge 1 × 10-6 cm sec-1) found at the water table region under natural flow conditions. Bubbles clog pores and therefore reduce the hydraulic conductivity without significantly reducing the volumetric water content. Stagnation at the water table region results since prevailing pressures (in the order of 10-1 atmospheres) are not sufficiently large to move bubbles through porous media in a water environment.  相似文献   

19.
Most hydrodynamic fluidized bed models,including CFD codes,neglect any effects of the plenum chamber volume.Experiments were performed in a 0.13 m ID fluidization column to determine plenum chamber volume effects on fluidized bed hydrodynamics for FCC and glass particles.Two low-pressure-drop distributors were used,one with a single orifice,and the other with 33 orifices and the same total open area as the single orifice.The results show two peaks in the frequency spectra for the single-orifice distributor,...  相似文献   

20.
Since the carbon dioxide (CO2) capture using solid sorbent is a reversible reaction, the solid sorbent can be regenerated by the desorption process. Therefore, the desorption process is one of the key important processes for the CO2 capture system. Traditionally, most of the literature studies focus on the desorption of solid sorbent under an N2 atmosphere. However, the desorption process of the solid sorbent is inappropriate in the real system because the system will need another process to separate CO2 and nitrogen (N2) after the desorption process. This study focused on the CO2 desorption of potassium carbonate supported on gamma-alumina (K2CO3/γ-Al2O3) in a wet fluidized bed under a steam atmosphere by using the multiphase computational fluid dynamics (CFD) simulation. The effects of water thickness and dry restitution coefficient on CO2 desorption rate were investigated to provide a realistic particle collision behavior and to explore their effects on CO2 desorption phenomena. Moreover, the effect of steam velocity on the hydrodynamic behaviors of fluidization which on CO2 desorption rate was studied. The simulated results demonstrated that all the parameters, water thickness, dry restitution coefficient, and steam velocity had significantly affected system hydrodynamics and CO2 desorption rate in the wet fluidization desorption process. Furthermore, the effect of desorption temperature on CO2 desorption rate was evaluated for finding the appropriate temperature for CO2 desorption process of K2CO3/γ-Al2O3. The results showed that the appropriate desorption temperature for CO2 desorption under steam atmosphere was the temperature over 150 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号