首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field–flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.  相似文献   

2.
An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl intensity on the flow and combustion characteristics. First, stream lines and velocity distribution in the flow field were obtained using PIV (Particle Image Velocimetry) method in a model burner. In contrast with the axial flow without swirl, highly swirled air induced streamlines going along the burner tile, and its backward flow was generated by recirculation in the center zone of the flow field. In the combustion, the flame shape with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure was examined by measuring OH and CH radicals intensity and by calculating Damkohler number (Da) and turbulence Reynolds number (Re T ). It appeared that luminescence intensity decreased at higher swirl number due to the recirculated flue gas, and the flat flames were comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the flue gas widely contacted on the flame front, and decreased the flame temperature and emissions concentration as thermal NO. The homogeneous temperature field due to the widely flat flame was obtained, and the RMS in the high temperature region was rather lower at higher swirl number. Consequently, the stable flat flame with low NO concentration was achieved.  相似文献   

3.
Rich n-heptane and diesel flames in two-layer porous media are experimentally investigated in the context of syngas production. The stable operating points of n-heptane reforming have been determined and the mole fractions of H2, CO, CO2 and light hydrocarbons have been measured in the exhaust gas at an equivalence ratio of 2 for different thermal input values. The reformer performance has been assessed also from the point of view of the heat losses and the mixture homogeneity. The pre-vapouriser produces an approximately uniform vapour–air mixture upstream of the flame front. The range of flow rates for stable flames decreased with increasing equivalence ratio. Heat losses were about 10% of the thermal input at high firing rates. A 77.2% of the equilibrium H2 was achieved at a flame speed of 0.82 m/s. The same reactor with a different porous matrix for the reforming stage demonstrates diesel reforming to syngas with a conversion efficiency of 77.3% for a flame speed of 0.65 m/s.  相似文献   

4.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

5.
Lean limit flames in methane/hydrogen/air mixtures propagating in tubes of internal diameters (ID) of 6.0, 8.9, 12.3, 18.4, 25.2, 35.0, and 50.2 mm have been experimentally studied. The flames propagated upward from the open bottom end of the tube to the closed upper end. The content of hydrogen in the fuel gas has been varied in the range 0–40 mol%. Lean flammability limits have been determined; flame shapes recorded and the visible speed of flame propagation measured. Most of the observed limit flames in tubes with diameters in the range of 8.9–18.4 mm had enclosed shape, and could be characterized as distorted or spherical flame balls. The tendency was observed for mixtures with higher hydrogen content to form smaller size, more uniform flame balls in a wider range of tube diameters. At hydrogen content of 20% or more in the fuel gas, limit flames in largest diameters (35.0 mm and 50.2 mm ID) tubes had small, compared to the tube diameter, size and were “lens”-shaped. “Regular” open-front lean limit flames were observed only for the smallest diameters (6.0 mm and 8.9 mm) and largest diameters (35.0 and 50.2 mm ID), and only for methane/air and (90% CH4 + 10% H2)/air mixtures, except for 6 mm ID tube in which all limit flames had open front. In all experiments, except for the lean limit flames in methane/air and (90% CH4 + 10% H2)/air mixtures in the 8.9 mm ID tube, and all limit flames in 6.0 mm ID tube, visible flame speeds very weakly depended on the hydrogen content in the fuel gas and were close to- or below the theoretical estimate of the speed of a rising hot bubble. This observation suggests that the buoyancy is the major factor which determines the visible flame speed for studied limit flames, except that last mentioned. A decrease of the lean flammability limit value with decreasing the tube diameter was observed for methane/air and (90% CH4 + 10% H2)/air mixtures for tubes having internal diameters in the range of 18.4–50.2 mm. This effect has been attributed to the stronger combined effect of the preferential diffusion and flame stretch in narrower tubes for flames which resemble rising bubble.  相似文献   

6.
The flow above the free end of a surface-mounted finite-height cylinder was studied in a low-speed wind tunnel using particle image velocimetry (PIV). Velocity measurements were made in vertical and horizontal measurement planes above the free end of finite cylinders of aspect ratios AR = 9, 7, 5 and 3, at a Reynolds number of Re = 4.2 × 104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.7. Flow separating from the leading edge formed a prominent recirculation zone on the free-end surface. The legs of the mean arch vortex contained within the recirculation zone terminate on the free-end surface on either side of the centreline. Separated flow from the leading edge attaches onto the upper surface of the cylinder along a prominent attachment line. Local separation downstream of the leading edge is also induced by the reverse flow and arch vortex circulation within the recirculation zone. As the cylinder aspect ratio is lowered from AR = 9 to AR = 3, the thickness of the recirculation zone increases, the arch vortex centre moves downstream and higher above the free-end surface, the attachment position moves downstream, and the termination points of the arch vortex move upstream. A lowering of the aspect ratio therefore results in accentuated curvature of the arch vortex line. Changes in aspect ratio also influence the vorticity generation in the near-wake region and the shape of the attachment line.  相似文献   

7.
Atomization of liquids with high viscosity is always a challenge, especially when small diameter droplets and high liquid flow rates are simultaneously required. In the present research, the performance of a Venturi–vortex twin-fluid swirl nozzle is examined, attending to its capabilities to generate droplets with diameters below 20 µm when atomizing pure glycerin at room temperature. In this nozzle, air is injected tangentially in a central convergent section, and discharges suctioning the liquid fed to a coaxial chamber, here using a gear pump. The resulting spray is visualized and analyzed. Droplet size distributions are measured with a laser diffractometer. As expected, droplet diameter increases with liquid flow rate, and quickly diminishes when air flow rate is increased. Sauter mean diameters (SMD) below 15 µm can be obtained even when atomizing pure glycerin. However, these values are obtained for relatively low glycerin flow rates (∼5 l/h), and with rather wide distributions. For 10 l/h and an air-to-liquid mass flow rate ratio (ALR) of 13.7 more than 26% of the glycerin volume is atomized in droplets smaller than 20 µm. Liquid ligaments are observed near the nozzle exit, but they tend to break up while moving downstream.  相似文献   

8.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

9.
In order to obtain the knowledge necessary for developing new effective fire extinguishing technologies, we determined experimentally the gas temperature in the trace of water droplets streamlined by hot air flow. It was important to establish how much the temperature in the droplet trace decreases and how fast it recovery to the initial temperature field after the droplet evaporation. The following parameters were varied: droplet size from 1.3 mm to 1.7 mm, velocity from 1 m/s to 5 m/s, initial airflow temperature from 473 K to 773 K, number of droplets (one or two), and the arrangement of droplets relative to the hot inflow (serial or parallel). The study proves the theoretical hypothesis about a significant influence of evaporation on the temperature in the water droplet trace. When a temperature trace of water droplets is formed, irrespective of their arrangement, the role of the evaporation process strengthens with the gas flow temperature rising. Furthermore, the study specifies typical longitudinal dimensions of the aerodynamic and temperature traces of water droplets. It has been established that when droplets are located in series and in parallel, their combined impact on the temperature and velocity of the gas flow in the medium differs rather considerably.  相似文献   

10.
The present work explores unusual flow behavior of entangled fluids in an abrupt contraction flow device. Fluorescent imaging was carried out on four different entangled DNA solutions with concentrations ranging from 0.1 to 1.0% (with a wide range of entanglements per chain Z = 7–55). For weakly entangled solutions (Z < 30), vortex flow was dominant at high flow rates. However, for well-entangled DNA solutions (Z  30), unusual time dependant shear banding was observed at the contraction entrance. Upon reducing the slip length by adding sucrose to the well-entangled DNA solution, vortex flow became dominant again. In vortex flow, most DNA chains remained coiled at the corner in regular recirculation. However, when jerky-shear-banding flow developed, significant stable stretching of DNA chains occurred at the center-line, with quasi-periodic switching between stretching and recoil at the corner.  相似文献   

11.
We consider two-dimensional, inertia-free, flow of a constant-viscosity viscoelastic fluid obeying the FENE-CR equation past a cylinder placed symmetrically in a channel, with a blockage ratio of 0.5. Through numerical simulations we show that the flow becomes unsteady when the Deborah number (using the usual definition) is greater than De  1.3, for an extensibility parameter of the model of L2 = 144. The transition from steady to unsteady flow is characterised by a small pulsating recirculation zone of size approximately equal to 0.15 cylinder radius attached to the downstream face of the cylinder. There is also a rise in drag coefficient, which shows a sinusoidal variation with time. The results suggest a possible triggering mechanism leading to the steady three-dimensional Gortler-type vortical structures, which have been observed in experiments of the flow of a viscoelastic fluid around cylinders. The results reveal that the reason for failure of the search for steady numerical solutions at relatively high Deborah numbers is that the two-dimensional flow separates and eventually becomes unsteady. For a lower extensibility parameter, L2 = 100, a similar recirculation is formed given rise to a small standing eddy behind the cylinder which becomes unsteady and pulsates in time for Deborah numbers larger than De  4.0–4.5.  相似文献   

12.
The flow distribution across automotive exhaust catalysts has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency) and load (flow rate). This study reports on flow measurements made across catalyst monoliths placed downstream of a wide-angled planar diffuser presented with pulsating flow. Cycle-resolved particle image velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (defined as the J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J  3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re.  相似文献   

13.
The appearance of a recirculation zone and the formation of non-stationary vortices behind a cylinder in the unconfined flow of a Herschel–Bulkley fluid have been studied by numerical simulation. The Herschel–Bulkley constitutive equation was regularised by using the Papanastasiou model. Special attention was paid to determining the numerical parameters and comparing them to existing results. The influence of the Oldroyd number and power-law index on flow morphology and, in particular, on the unyielded zones was studied over a wide spectrum (0  Od  10) and (0.3  n  1.8). It was seen that the greater the Oldroyd number, the greater the critical Reynolds numbers and Strouhal number for the two flow regimes. The influence of the power-law index is more complex.  相似文献   

14.
The mean wake of a surface-mounted finite-height square prism was studied experimentally in a low-speed wind tunnel to explore the combined effects of incidence angle (α) and aspect ratio (AR). Measurements of the mean wake velocity field were made with a seven-hole pressure probe for finite square prisms of AR = 9, 7, 5 and 3, at a Reynolds number of Re = 3.7 × 104, for incidence angles from α = 0° to 45°. The relative thickness of the boundary layer on the ground plane, compared to the prism width, was δ/D = 1.5. As the incidence angle increases from α = 0° to 15°, the mean recirculation zone shortens and the mean wake shifts in the direction opposite to that of the mean lift force. The downwash is also deflected to this side of the wake and the mean streamwise vortex structures in the upper part of the wake become strongly asymmetric. The shortest mean recirculation zone, and the greatest asymmetry in the mean wake, is found at the critical incidence angle of αcritical  15°. As the incidence angle increases from α = 15° to 45°, the mean recirculation zone lengthens and the mean streamwise vortex structures regain their symmetry. These vortices also elongate in the wall-normal direction and become contiguous with the horseshoe vortex trailing arms. The mean wake of the prism of AR = 3 has some differences, such as an absence of induced streamwise vorticity near the ground plane, which support its classification as lying below the critical aspect ratio for the present flow conditions.  相似文献   

15.
The steady flow of generalized Newtonian fluid in a two-dimensional 1:3 sudden expansion was studied numerically. Finite volume method was applied to solve the momentum equations along with the continuity equation and the Power law rheological model within the laminar flow regime for a range of Reynolds number and Power law index values. The values of generalized Reynolds number, based on physical and rheological properties, upstream channel height and bulk velocity, were varied between 0.0001  Regen  10, while the Power law index values mapped the 0.60  n  1.40 range, allowing for the investigation of both shear-thinning and shear-thickening effects at creeping as well as slowly moving fluid flow conditions. We report accurate results of a systematic study with a focus on most important characteristics of recirculating fluid flow in the downstream section of sudden expansion geometry. It is shown that for the creeping flow regime there exist finite sized redevelopment length, extra pressure drop (Couette correction) and recirculation zones (also called as Moffatt vortices) that are influenced by the non-Newtonian viscous behaviour.  相似文献   

16.
The micro combustor is a key component of the micro thermophotovoltaic (TPV) system. Improving the wall temperature of the micro combustor is an effective way to elevate the system efficiency. An experimental study on the wall temperature and radiation heat flux of a series of cylindrical micro combustors (with a backward-facing step) was carried out. For the micro combustors with d = 2 mm, the regime of successful ignition (under the cold wall condition) was identified for different combustor lengths. Acoustic emission was detected for some cases and the emitted sound was recorded and analyzed. Under the steady-state condition, the effects of the combustor diameter (d), combustor length (L), flow velocity (u0) and fuel–air equivalence ratio (Ф) on the wall temperature distribution were investigated by measuring the detailed wall temperature profiles. In the case that the micro combustor is working as an emitter, the optimum efficiency was found at Ф  0.8, independent of the combustor dimensions (d and L) and the flow velocity. Under the experimental conditions employed in the present study, the positions of the peak wall temperature were found to be about 8–11 mm and 4–6 mm from the step for the d = 3 mm and d = 2 mm micro combustors, respectively, which are 8–11 and 8–12 times of their respective step heights. This result suggests that the backward-facing step employed in the combustor design is effective in stabilizing the flame position.  相似文献   

17.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

18.
Experimental results for various water and air superficial velocities in developing adiabatic horizontal two-phase pipe flow are presented. Flow pattern maps derived from videos exhibit a new boundary line in intermittent regime. This transition from water dominant to water–gas coordinated regimes corresponds to a new transition criterion CT = 2, derived from a generalized representation with the dimensionless coordinates of Taitel and Dukler.Velocity, turbulent kinetic energy and dissipation rate, void fraction and bubble size radial profiles measured at 40 pipe diameters for JL = 4.42 m/s by hot film velocimetry and optical probes confirm this transition: the gas influence is not continuous but strongly increases beyond JG = 0.06 m/s. The maximum dissipation rate, derived from spectra, is increased in two-phase flow by a factor 5 with respect to the single phase case.The axial evolution of the bubble intercept length histograms also reveal the flow organization in horizontal layers, driven by buoyancy effects. Bubble coalescence is attested by a maximum bubble intercept evolving from 2.5 to 4.5 mm along the pipe. Turbulence generated by the bubbles is also manifest by the 4-fold increase of the maximum turbulent dissipation rate along the pipe.  相似文献   

19.
Steel industries are a major contributor to aerosols in steel cities like Rourkela. We designed an air quality sampling program to characterize total suspended particulate (TSP) aerosol in urban areas of Rourkela and to identify their steel-related and other sources. Monitoring was carried out over 8 h, twice per week from January 2011 to December 2012. Metallic species of TSP aerosols were analyzed using an atomic absorption spectrophotometer; ionic species using the IS 3025 method; and carbonaceous species using a total organic carbon analyzer. Enrichment factor and Spearman's rank correlation analysis were carried out on compositional data. Significant seasonal variations were observed for TSP with totals in summer > spring > winter > monsoon. Low concentrations during monsoon reflected wet scavenging, while high concentrations during summer were related to wind turbulence and low humidity. The chemical mass balance model CMB8.2 was applied to apportion sources. Particles related to steel production, road dust, and soil were dominant in all seasons. A fertilizer plant was found to contribute particles in summer and monsoon. Wood combustion, diesel exhaust, and liquefied petroleum gas contributed significantly in spring and winter. While diesel exhaust, industrial manufacturing, solid waste burning, cement kilns, and construction were found to contribute to TSP at various times throughout the year.  相似文献   

20.
The variations of mass concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31, 2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.5 with NO2: r = 0.256–0.688, mean r = 0.498; PM10 with NO2: r = 0.169–0.713, mean r = 0.493; PM2.5 with SO2: r = 0.232–0.693, mean r = 0.449; PM10 with SO2: r = 0.131–0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156–0.721, mean r = 0.437; PM10: r = 0.06–0.67, mean r = 0.380). The correlation between PMs and O3 was either weak or uncorrelated (PM2.5: r = −0.35 to 0.089, mean r = −0.164; PM10: r = −0.279 to 0.078, mean r = −0.127), except in Haikou (PM2.5: r = 0.500; PM10: r = 0.509).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号