首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catecholamine oxidation process induces cardiotoxicity and neurotoxicity. Catecholamines can oxidize to aminochromes through autoxidation or by enzymatic or non-enzymatic catalysis. Although some toxic effects seem to be related to the formation of aminochromes there is still scarce information concerning the identification and evaluation of these compounds in in vivo models. In this study five catecholamines were oxidized to their respective aminochromes: adrenaline/adrenochrome; noradrenaline/noradrenochrome; dopa/dopachrome; dopamine/dopaminochrome; and isoproterenol/isoprenochrome. The evaluation of the catecholamines oxidation profile was performed by HPLC with photodiode array detection and using either enzymatic (tyrosinase) or non-enzymatic [Ag(2)O, CuSO(4), NaIO(4) and K(3)Fe(CN)(6)] catalytic systems. The NaIO(4) was found to be the most efficient oxidant of catecholamines. An isocratic reverse-phase HPLC method was developed to analyse each pair of catecholamine-aminochrome. The analytical system was then applied to the detection of adrenochrome in rat blood at 490 nm. Thus, adrenochrome was administered i.p. to rats and its concentration in whole blood was monitored after 5, 15 and 25 min. Blood treatment for adrenochrome evaluation consists of an acidification for protein precipitation followed by a rapid neutralization. The results showed a rapid decrease of adrenochrome concentration in blood after its administration. The adrenochrome present in blood was characterized by UV and tandem mass spectrometry.  相似文献   

2.
The stratum corneum (SC) is the outermost layer of skin that functions as a barrier and protects against environmental influences and transepidermal water loss. Its unique morphology consists of keratin-enriched corneocytes embedded in a distinctive mixture of lipids containing mainly ceramides, free fatty acids, and cholesterol. Ceramides are sphingolipids consisting of sphingoid bases, which are linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine (dS), sphingosine (S), phytosphingosine (P), and 6-hydroxysphingosine (H), and the fatty acid acyl chains are composed of non-hydroxy fatty acid (N), α-hydroxy fatty acid (A), ω-hydroxy fatty acid (O), and esterified ω-hydroxy fatty acid (E). The 16 ceramide classes include several combinations of sphingoid bases and fatty acid acyl chains. Among them, N-type ceramides are the most abundant in the SC. Mass spectrometry (MS)/MS analysis of N-type ceramides using chip-based direct infusion nanoelectrospray-ion trap mass spectrometry generated the characteristic fragmentation pattern of both acyl and sphingoid units, which could be applied to structural identification of ceramides. Based on the MS/MS fragmentation patterns of N-type ceramides, comprehensive fragmentation schemes were proposed. In addition, mass fragmentation patterns, which are specific to the sphingoid backbone of N-type ceramides, were found in higher m/z regions of tandem mass spectra. These characteristic and general fragmentation patterns were used to identify N-type ceramides in human SC. Based on established MS/MS fragmentation patterns of N-type ceramides, 52 ceramides (including different classes of NS, NdS, NP, and NH) were identified in human SC. The MS/MS fragmentation patterns of N-type ceramides were characterized by interpreting their product ion scan mass spectra. This information may be used to identify N-type ceramides in the SC of human, rat, and mouse skin.  相似文献   

3.
The diastereoisomers of α-aminophosphonates are key intermediates in the synthesis of enantiomerically pure α-aminophosphonic acids, which are analogs of α-amino acids. Although several methods have been reported for the diastereoselective synthesis of α-aminophosphonates, their mass spectrometry (MS) fragmentation patterns have not yet been fully investigated. The work described here involved a detailed study of the fragmentation of enriched α-aminophosphonate diastereoisomers by chemical ionization (CI-MS) and fast atom bombardment (FAB)-MS. The complete characterization of the different conventional MS fragmentation pathways is represented and this intriguing exercise required the use of tandem mass spectrometry (MS/MS) experiments and high-resolution accurate mass measurements. All α-aminophosphonates gave prominent pseudomolecular ions, protonated molecules [MH](+) , and their fragmentations mainly showed a loss of dimethyl phosphite to give the corresponding iminium ions as base peaks for α-aminophosphonates bearing methylbenzyl and 2,2-dimethylbutyl fragments. The loss of the chiral fragment from the iminium ions bearing the (S)-1-(1-naphthyl)ethyl group gave rise to a base peak due to aryl cations. The nature of all fragment ions were confirmed by high-resolution mass spectrometry (HRMS).  相似文献   

4.
Oxazepam has been subjected to controlled degradation at 100°C for 3 h in 0.5 M HCl and 0.5 M NaOH. Following neutralisation of the degradation mixture and removal of salts by solid‐phase extraction (SPE), isocratic high‐performance liquid chromatography/mass spectrometry (HPLC/MS) using water/methanol (25:75 v/v) as the mobile phase was carried out using a flow diverter to collect fractions prior to their characterisation by electrospray ionisation multi‐stage mass spectrometry (ESI‐MSn) and proposal of the corresponding fragmentation patterns. The elemental compositions of the degradation products and their MS fragments were evaluated using electrospray ionisation quadrupole time‐of‐flight tandem mass spectrometry (ESI‐QTOF‐MS/MS) which was then used to support the proposed fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
N-linked oligosaccharides were released from hen ovalbumin by PNGase F and derivatized with phenylhydrazine. They were then examined by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Phenylhydrazones of N-glycans under MALDI-tandem mass spectrometry (MS/MS) and post-source decay (PSD) conditions produced relatively similar fragmentation patterns; however, more cross-ring cleavages and fragment ions corresponding to low abundance isomeric structures were detected by MS/MS and not in PSD. Most fragment ions corresponded to glycosidic cleavages with preferential loss of residues from the chitobiose core and the 3-antenna. Sialylated phenylhydrazone-N-glycans, characterized here for the first time in ovalbumin by tandem mass spectrometry, underwent losses of sialic acid residues followed the same fragmentation pathways observed with neutral derivatized glycans. The relative abundances of some fragment ions indicated the linkage position of sialic acid and provided information on the number of residues attached to the 6-antenna. Also, new structures of ovalbumin glycans were observed as part of this study and are reported here.  相似文献   

6.
Eight phenolic compounds, obtained by in vitro fermentation of quercetin, quercetin-3-glucoside and quercetin-3-rhamnoglucoside were analysed by electrospray ionisation mass spectrometry (ESI-MS). Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) was performed on the [M - H]- precursor ions to obtain specific fragmentation. Typical fragmentation of the phenolic acids was loss of 44 (CO2) and 18 (H2O) u. Production of m/z 108 by loss of neutral radicals, e.g. HCO2, CH3 or HCO, was also favoured. Structures of the compounds, numbered 1-8, were suggested based on the fragmentation patterns.  相似文献   

7.
Genista tenera is a plant native to the Madeira Island (Portugal). From the ethanol extract of its powdered aerial parts, two flavones, three isoflavones and one 7-O-glucosyl isoflavone were isolated. A mass spectrometric study of these compounds was performed using liquid secondary ion mass spectrometry (LSIMS) in combination with high-energy collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS). Characteristic fragmentation patterns were observed in all the investigated compounds; the loss of small neutral species from the protonated molecules was useful for identifying the presence of specific functional groups in the A- and B-rings. In order to help to establish the proposed structures, NMR and UV studies were also performed.  相似文献   

8.
Fragmentation studies using both an ion-trap mass analyzer and a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer were performed in order to establish the fragmentation pathways of organic molecules. A general strategy combining MSn data (n = 1-4) in an ion-trap analyzer with tandem mass spectrometry and in-source collision-induced dissociation tandem mass spectrometry (CID MS/MS) in a Q-TOF instrument was applied. The MSn data were used to propose a tentative fragmentation pathway following genealogical relationships. When several assignments were possible, MS/MS and in-source CID MS/MS (Q-TOF) allowed the elemental compositions of the fragments to be confirmed. Quaternary ammonium herbicides (quats) were used as test compounds and their fragmentation pathways were established. The elemental composition of the fragments was confirmed using the TOF analyzer with relative errors <0.0023 Da. Some fragments previously reported in the literature were reassigned taking advantage of the high mass resolution and accuracy of the Q-TOF instrument, which made it possible to solve losses where nitrogen was involved.  相似文献   

9.
Phenolic compounds are the major bioactive constituents of Forsythia suspensa, an important Chinese herbal medicine used for the treatment of various infectious diseases. Fragmentation behaviors of the phenolic compounds in F. suspensa were investigated by using a high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS(n)) method. For common phenylethanoid glycosides, the loss of the caffeoyl moiety was the first fragmentation step, then sequential losses of rhamnose, hexose and water were observed in further fragmentations. If a substituent group presented in the beta position, the fragmentation was triggered by initial loss of a substituent group to form structures such as suspensaside A. Then it underwent the common fragmentation pathways as mentioned above, or eliminated characteristic residues of masses 134 or 152 Da, respectively. The latter pathway is reported here for the first time. The fragmentation behaviors of furofuran lignans displayed a typical cleavage of the tetrahydrofuran ring. However, the presence of a hydroxyl group at C-1 led to the successive loss of 30 Da. Neutral loss of CO(2) and benzyl cleavage were characteristic for lignans with a 2,3-dibenzylbutyrolactone skeleton. A neutral loss of 30 Da was also observed in the fragmentation pattern of flavonols. These fragmentation rules were implemented to analyze phenolic compounds in the fruits of F. suspensa. A total of 51 compounds, including 24 phenylethanoid glycosides, 21 lignans and 6 flavonols, were identified or tentatively characterized based on their retention times, UV spectra and MS fragmentation patterns.  相似文献   

10.
Historically, structural elucidation of unknown analytes by mass spectrometry alone has involved tandem mass spectrometry experiments using electron ionization. Most target molecules for bioanalysis in the metabolome are unsuitable for detection by this previous methodology. Recent publications have used high‐resolution accurate mass analysis using an LTQ‐Orbitrap with the more modern approach of electrospray ionization to identify new metabolites of known metabolic pathways. We have investigated the use of this methodology to build accurate mass fragmentation maps for the structural elucidation of unknown compounds. This has included the development and validation of a novel multi‐dimensional LC/MS/MS methodology to identify known uremic analytes in a clinical hemodialysate sample. Good inter‐ and intra‐day reproducibility of both chromatographic stages with a high degree of mass accuracy and precision was achieved with the multi‐dimensional liquid chromatography/tandem mass spectrometry (LC/MS/MS) system. Fragmentation maps were generated most successfully using collision‐induced dissociation (CID) as, unlike high‐energy CID (HCD), ions formed by this technique could be fragmented further. Structural elucidation is more challenging for large analytes >270 Da and distinguishing between isomers where their initial fragmentation pattern is insufficiently different. For small molecules (<200 Da), where fragmentation data may be obtained without loss of signal intensity, complete structures can be proposed from just the accurate mass fragmentation data. This methodology has led to the discovery of a selection of known uremic analytes and two completely novel moieties with chemical structural assignments made. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This work reports on the fragmentation of phosphoinositides by tandem mass spectrometry (MS/MS) and MS3 experiments on a hybrid apex-Qe Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICR MS) using internal infrared multiphoton dissociation (IRMPD). The fragmentation behavior of diacylphophatidylinositol triphosphate was intensively studied since an abundant loss of inositol biphosphate was observed. This loss was suggested to occur via phosphate migration along the inositol head group. Substantiation by MS3 experiments showed that this neutral loss is formed after the loss of water from the precursor ion, indicating phosphate migration along the inositol ring to the glycerol backbone. Further fragmentation of the ion formed by the loss of inositol biphosphate from diacylphophatidylinositol triphosphate resulted in the formation of a product ion with a molecular formula of C(3)H(5)O(7)P(2), corresponding to a glycerol backbone linked to two phosphate groups. We suggested different structures for this ion and compared their stability using modeling experiments.  相似文献   

12.
Everolimus (40-O-(2-hydroxyethyl)rapamycin, Certican) is a 31-membered macrolide lactone. In lymphocytes, it inhibits the mammalian target of rapamycin (mTOR) and is used as an immunosuppressant after organ transplantation. Due to its instability in pure organic solvents and insufficient HPLC separation, NMR spectroscopy analysis of its metabolite structures is nearly impossible. Therefore, structural identification based on tandem mass spectrometry (MS/MS) and MS(n) fragmentation patterns is critical. Here, we have systematically assessed the fragmentation pattern of everolimus during liquid chromatography (LC)-electrospray ionization (ESI)-MS/MS and validated the fragment structures by (1) comparison with structurally identified derivatives (sirolimus), (2) high-resolution mass spectrometry, (3) elucidation of fragmentation pathways using ion trap mass spectrometry (up to MS(5)) and (4) H/D exchange. In comparison with the structurally related immunosuppressants tacrolimus and sirolimus, our study was complicated by the low ionization efficiency of everolimus. Detection of positive ions gave the best sensitivity, and everolimus and its fragments were mainly detected as sodium adducts. LC-ESI-MS/MS of everolimus in combination with collision-induced dissociation (CID) resulted in a complex fragmentation pattern and the structures of 53 fragments were identified. These detailed fragmentation pathways of everolimus provided the basis for structural elucidation of all everolimus metabolites generated in vivo und in vitro.  相似文献   

13.
罗红霉素及其代谢物的电喷雾离子阱质谱研究   总被引:5,自引:1,他引:4  
采用电喷雾离子阱质谱法对人尿样中的罗红霉素及其10种代谢物进行了结构鉴定,利用质谱解析软件对其质谱裂解途径进行分析,发现它们的(+)ESI-MS2和(+)ESI-MS3质谱分别生成脱红霉糖和脱氨基糖碎片,并可见脱去C9位含氮烷基侧链和一系列质荷比相差18的脱水碎片离子,这些特征可用于罗红霉素及其结构类似物的体内代谢转化研究.  相似文献   

14.
Imaging mass spectrometry is emerging as a powerful tool that has been applied extensively for the localization of proteins, peptides, pharmaceutical compounds, metabolites, and lipids in biological tissues. In this article, a three-dimensional mass spectral imaging (3D MSI) technique was developed to examine distribution patterns of multiple neuropeptide families and lipids in the brain of the crab Cancer borealis. Different matrix/solvent combinations were compared for preferential extraction and detection of neuropeptides and lipids. Combined with morphological information, the distribution of numerous neuropeptides throughout the 3D structure of brain was determined using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Different localization patterns were observed for different neuropeptide families, and isoforms displaying unique distribution patterns that were distinct from the common family distribution trends were also detected. In addition, multiple lipids were identified and mapped from brain tissue slices. To confirm their identities, MS/MS fragmentation was performed. Different lipid species displayed distinct localization patterns, suggesting their potential different functional roles in the nervous system.  相似文献   

15.
The results of ESI(+) and ESI(-) mass spectrometry/mass spectrometry investigations of meso-tetrakisphenylporphyrin (TPP) and meso-trisphenylcorrole (TPC) in comparison with their meso-tetrakis(pentafluorophenyl)-substituted analogs T(F)PP and T(F)PC are reported. The fragmentation patterns of TPP and TPC show the expected loss of meso-aryl radicals. Analyzing the meso-pentafluorophenyl substituted analogs T(F)PP and T(F)PC, we found ESI(-) to be an excellent ionization mode. Rich and well-defined HF-elimination fragmentation patterns unique to the presence of meso-tetrafluorophenyl groups and evocative for the formation of fragments with direct covalent o-phenyl-to-beta-linkages are observed. A computation of the feasibility and relative energies of the resulting species corroborates the interpretation of the experimental findings. The computations indicate the presence of cooperative interactions between the linkages that direct the linkage formations to occur in a unidirectional fashion. MS/MS/MS experiments also provide indications for the regioselectivity of the fusions. Our observations further detail earlier reports of similar HF-eliminations and allow a generalization of the findings. The results presented may also point to strategies towards the bulk synthesis of novel porphyrinoid structures.  相似文献   

16.
This study has elucidated the fragmentation pathway for deprotonated isoflavones in electrospray ionization using MS(n) ion trap mass spectrometry and triple quadrupole mass spectrometry. Genistein-d(4) and daidzein-d(3) were used as references for the clarification of fragment structures. To confirm the relationship between precursor and product ions, some fragments were traced from MS(2) to MS(5). The previous literature for the structurally related flavones and flavanones located the loss of ketene (C(2)H(2)O) to ring C, whereas the present fragmentation study for isoflavones has shown that the loss of ketene occurs at ring A. In the further fragmentation of the [M-H-CH(3)](-*) radical anion of methoxylated isoflavones, loss of a hydrogen atom was commonly found. [M-H-CH(3)-CO-B-ring](-) is a characteristic fragment ion of glycitein and can be used to differentiate glycitein from its isomers. Neutral losses of CO and CO(2) were prominent in the fragmentation of deprotonated anions in ion trap mass spectrometry, whereas recyclization cleavage accounted for a very small proportion. In comparison with triple quadrupole mass spectrometry, ion trap MS(n) mass spectrometry has the advantage of better elucidation of the relationship between precursor and product ions.  相似文献   

17.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N‐phenylpropanamide. 1‐(2‐Phenylethyl)‐1,2,3,6‐tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS3) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium‐labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Alkaloid profiles in Stemona tuberosa were found to be highly variable. Six Stemona alkaloids isolated from the plant were subjected to on-line high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) and tandem mass spectrometry (MS/MS) analyses. Their fragmentation patterns and products were useful for their characterization. The LC/MS fingerprints of these alkaloids, though variable among samples, could provide an overall characterization of the authenticity and quality of this species and help to differentiate it from S. japonica and S. sessilifolia, as all three species are recognized as genuine sources of the herb Radix Stemonae in the Pharmacopoeia of the People's Republic of China.  相似文献   

19.
In this study, several anticancer drugs and their analogues consisting of organic and organometallic compounds were analyzed by electrospray ionization mass spectrometry (ESI/MS) using a quadrupole mass spectrometer. Protonated molecular ions [M+H]+ were observed for all of the compounds studied, and in the case of the two steroid sulfates, deprotonated molecular ions [M-H]? were obtained. Tandem mass spectrometry was performed on these quasimolecular ions, and the product ions formed provided useful fragmentation patterns that were characteristic for the compounds. This study provides evidence that ESI/MS is a sensitive technique for structure confirmation and identification of small organic and organometallic molecules.  相似文献   

20.
In this study, different electrospray ionization mass spectrometric (ESI‐MS) methods were utilized to analyze several pairs of taxane stereoisomers including paclitaxel and 7‐epi‐paclitaxel. Both ESI‐MS and tandem mass spectrometry (MS/MS) techniques provided stereochemically dependent mass spectra in negative‐ion mode, and all studied stereoisomers could be easily distinguished based on their characteristic ions or distinct fragmentation patterns. MS/MS experiments for several taxane analogues at various collision energies were performed to elucidate potential dissociation pathways. The gas‐phase deprotonation potentials were also calculated to estimate the most thermodynamically favorable deprotonation site using DFT B3LYP/6‐31G(d). The results of the theoretical studies agreed well with the fragmentation patterns of paclitaxel and 7‐epi‐paclitaxel observed from MS/MS experiments. In addition, it was found that liquid chromatography (LC)/ESI‐MS was a useful and sensitive technique for assignment of C‐7 taxane stereoisomers from realistic samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号