首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poor performance of hydrogen storage materials continues to hinder development of fuel cell-powered automobiles. Nanoscale carbons, in particular (activated carbon, exfoliated graphite, fullerenes, nanotubes, nanofibers, and nanohorns), have not fulfilled their initial promise. Here we show that carbon materials can be rationally designed for H2 storage. Carbide-derived carbons (CDC), a largely unknown class of porous carbons, are produced by high-temperature chlorination of carbides. Metals and metalloids are removed as chlorides, leaving behind a collapsed noncrystalline carbon with up to 80% open pore volume. The detailed nature of the porosity-average size and size distribution, shape, and total specific surface area (SSA)-can be tuned with high sensitivity by selection of precursor carbide (composition, lattice type) and chlorination temperature. The optimum temperature is bounded from below by thermodynamics and kinetics of chlorination reactions and from above by graphitization, which decreases SSA and introduces H2-sorbing surfaces with binding energies too low to be useful. Intuitively, pores of different size and shape should not contribute equally to hydrogen storage. By correlating pore properties with 77 K H2 isotherms from a wide variety of CDCs, we experimentally confirm that gravimetric hydrogen storage capacity normalized to total pore volume is optimized in materials with primarily micropores ( approximately 1 nm) rather than mesopores. Thus, in agreement with theoretical predictions, a narrow size distribution of small pores is desirable for storing hydrogen, while large pores merely degrade the volumetric storage capacity.  相似文献   

2.
Processes in which hydrogen sulfide admixtures (from a 1% H2S + 99% Ar mixture) are removed by sorption on starting carbons and those modified with alkali metal ins of various sizes, made from technical-grade lignin, and hydrogen sulfide is eliminated by catalytic oxidation of H2S with oxygen were studied. The factors determining the absorption capacity of the carbons and their catalytic activity in oxidation of hydrogen sulfide were determined: these are, in the first place, presence of water in the pore space and in the hydration shell of modifying ions, size of these ions, and experimental temperature.  相似文献   

3.
The long life durability and extraordinary stability of supercapacitors are ascribed to the common concept that the charge storage is purely based on double-layer charging. Therefore the ideal supercapacitor electrode should be free of charge induced microscopic structural changes. However, recent in-situ investigations on different carbon materials for supercapacitor electrodes have shown that the charge and discharge is accompanied by dimensional changes of the electrode up to several percent. This work studies the influence of the pore size on the expansion behavior of carbon electrodes derived from titanium carbide-derived carbons with an average pore size between 5 and 8 Å. Using tetraethylammonium tetrafluoroborate in acetonitrile, the swelling of the electrodes was measured by in situ dilatometry. The experiments revealed an increased expansion on the negatively charged electrode for pores below 6 Å, which could be described with pore swelling.  相似文献   

4.
Micro- and mesoporous carbide-derived carbons (CDCs) were synthesised from TiC powder via a gas-phase reaction using HCl and Cl2 within the temperature range of 700–1,100 °C. Analysis of X-ray diffraction results show that TiC-CDCs consist mainly of graphitic crystallites. The first-order Raman spectra showed the graphite-like absorption peaks at ~1,577 cm?1 and the disorder-induced peaks at ~1,338 cm?1. The low-temperature N2 sorption experiments were performed, and specific surface areas up to 1,214 and 1,544 m2?g?1 were obtained for TiC-CDC (HCl) synthesised at T?=?800 °C and TiC-CDC (Cl2) synthesised at T?=?900 °C, respectively. For the TiC-CDC powders synthesised, a bimodal pore size distribution has been established with the first maximum in the region up to 1.5 nm and the second maximum from 2 to 4 nm. The energy-related properties of supercapacitors based on 1 M (C2H5)3CH3NBF4 in acetonitrile and TiC-CDC (Cl2) and TiC-CDC (HCl) as electrode materials were also investigated by cyclic voltammetry, impedance spectroscopy, galvanostatic charge/discharge and constant power methods. The specific energy, calculated at U?=?3.0 V, are maximal for TiC-CDC (Cl2 800 °C) and TiC-CDC (HCl 900 °C), which are 43.1 and 31.1 W?h?kg?1, respectively. The specific power, calculated at cell potential U?=?3.0 V, are maximal for TiC-CDC (Cl2 1,000 °C) and TiC-CDC (HCl 1,000 °C), which are 805.2 and 847.5 kW?kg?1, respectively. The Ragone plots for CDCs prepared by using Cl2 or HCl are quite similar, and at high power loads, the TiC-CDC material synthesised using Cl2 at 900 °C, i.e. the material with optimal pore structure, delivers the highest power at constant energy.  相似文献   

5.
Nanoporous carbons were synthesized using furfuryl alcohol and sucrose as precursors and MCM-41 and mordenite as nanoporous templates.The produced nanoporous carbons were used as adsorbent for methane storage.The average pore diameter of the samples varied from 3.9 nm to 5.9 nm and the BET surface area varied from 320m2/g to 824m2/g.The volumetric adsorption experiments revealed that MCM-41 and sucrose had better performance compared with mordenite and furfuryl alcohol,correspondingly.Also,the effect of precursor to template ratio on the structure of nanoporous carbons and their adsorption capacities was investigated.The nanoporous carbon produced from MCM-41 mesoporous molecular sieve partially filled by sucrose shows the best methane adsorption capacity among the tested samples.  相似文献   

6.
Activated carbons of various origins (bituminous coal, wood, coconut shells, and peat) were studied as adsorbents of hydrogen sulfide. Before the experiments the surface of the adsorbents was characterized by using the sorption of nitrogen, Boehm and potentiometric titrations, thermal analysis, and FTIR. The adsorbents were chosen to differ in their surface areas, pore volumes, and surface acidities. To broaden the spectrum of surface acidity, carbons were oxidized by using nitric acid and ammonium persulfate. After hydrogen sulfide adsorption the species present on the surface were analyzed using thermal analysis, ion chromatography, and elemental analysis. The H(2)S breakthrough capacity tests showed that the performances of different carbons differ significantly. For a good performance of carbons as hydrogen sulfide adsorbents a proper combination of surface chemistry of carbon and porosity is needed. It was demonstrated that a more acidic environment promotes the formation of sulfur oxides and sulfuric acid despite yielding small H(2)S removal capacities. On the other hand, a basic environment favors the formation of elemental sulfur (sulfur radicals) and yields high capacities. The presence of a sufficient amount of water preadsorbed on the carbon surface to facilitate dissociation also plays an important role in the process of H(2)S adsorption/oxidation. The results showed that there is a critical value in carbon surface acidity, which when exceeded results in a negligible hydrogen sulfide breakthrough capacity. This is consistent with the mechanism of H(2)S adsorption on unmodified carbons, where the rate-limiting step is the reaction of adsorbed hydrogen sulfide ion with dissociatively adsorbed oxygen. When the acidity is expressed as pH, its value should be higher than 5 to ensure the effective removal of hydrogen sulfide from the gas phase. Study of carbon regeneration using water washing and heat treatment showed that the adsorbents can be regenerated to about 40% of their initial capacity.  相似文献   

7.
Carbide-derived carbons produced by chlorination of titanium carbide at 600, 800, or 1100 °C were subjected to a post-treatment at 600 °C in Ar, H2, or NH3 atmosphere. Experimental results suggest that the chlorination temperature influences the ordering of carbon in a manner that impacts specific surface area and porosity. Higher chlorination temperatures lead to higher total pore volume and increased ordering, but lower microporosity. The effect of post-treatments on surface chemistry is pronounced only for samples chlorinated at 600 °C; post-treatments in Ar are shown to be less effective for chlorine removal than those performed in H2 or NH3. Post-treatments in Ar result in a lower total pore volume compared to the ones in H2 or NH3 for the same chlorination temperature. Samples chlorinated at higher temperatures contained less oxygen functionalities than samples chlorinated at 600 °C, and showed correspondingly less desorption of H2O, possibly due to diminished uptake of ambient water.  相似文献   

8.
Potentialities and perspectives of using the known processes of hydrogen sulfide decomposition (thermal, plasmochemical, electrochemical, and photochemical) to produce hydrogen are examined. The results of theoretical and experimental studies of hydrogen sulfide dissociation on the surface of single crystals are presented. The data on the low-temperature decomposition of H2S on the sulfide and metal catalysts are discussed. The electronic structure of diatomic sulfur and thermodynamics of its formation in the processes of H2S decomposition are considered. The decomposition of hydrogen sulfide on the heterogeneous catalysts placed under the solvent layer is shown to be promising. The mechanism of assimilation of hydrogen sulfide by colorless sulfur bacteria is proposed.  相似文献   

9.
Mesoporous carbide-derived carbons (CDC) with hierarchical pore structure were fabricated by chlorine etching of mesoporous titanium carbides. Their capacitive behaviors for electrochemical capacitor were investigated in comparison to those of purely microporous CDC. The as-prepared mesoporous CDC exhibited not only uniform micropores formed by leaching out titanium atoms but a 3-D mesoporous network inherited from their parent carbides. These mesoporous CDC could deliver a high specific capacitance of 120 F g−1 in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate. Moreover, they owned excellent frequency response and superior rate capability with capacitance retention ratio of 91% at current density of 10 A g−1. A high energy density of 16.3 Wh kg−1 was obtained even though power density was raised up to 4,300 W kg−1. The distinctive capacitive performance of mesoporous CDC would be attributed to their superior microstructure, in which the uniform micropores contributed to high charge storage while the 3-D mesoporous network and nanometer-scaled dimension of particles facilitated ions transfer as well as shortened electrolyte diffusion distance.  相似文献   

10.
The prospects of carbon adsorbents as vehicular hydrogen storage media are briefly discussed.  相似文献   

11.
The hydrogen sulfide chemisorption on lead sulfide at 22–100°C is studied by static testing in a vacuum and by pulsed chromatography. It is established that H2S is sorbed in reversible and irreversible forms and that the process is accompanied by the sample charging. Irreversibly sorbed hydrogen sulfide is removed by heating the sample in a vacuum or in an inert-gas stream at temperatures exceeding the adsorption temperature by 30–50°C.  相似文献   

12.
A promising hydrogen sulfide (H2S) sensor was prepared by electrodeposition of Au nanoclusters on glassy carbon electrode (GCE) and the surface structure was characterized by SEM and EDAX. These flower-like form Au nanoclusters, which were made up of highly dense clustering Au nanorods with an average diameter of 20 nm and length up to 80 nm, had an average size about 600 nm and uniformly distributed on the GCE surface. The electrocatalytic oxidation of H2S in gasoline was performed on this modified electrode, which had a satisfactory liner response to H2S in the range of 1–80 ppm and a detection limit of 0.45 ppm (s/n = 3). This sensor was sensitive, selective and stable.  相似文献   

13.
Selected metal-organic frameworks exhibiting representative properties--high surface area, structural flexibility, or the presence of open metal cation sites--were tested for utility in the separation of CO(2) from H(2) via pressure swing adsorption. Single-component CO(2) and H(2) adsorption isotherms were measured at 313 K and pressures up to 40 bar for Zn(4)O(BTB)(2) (MOF-177, BTB(3-) = 1,3,5-benzenetribenzoate), Be(12)(OH)(12)(BTB)(4) (Be-BTB), Co(BDP) (BDP(2-) = 1,4-benzenedipyrazolate), H(3)[(Cu(4)Cl)(3)(BTTri)(8)] (Cu-BTTri, BTTri(3-) = 1,3,5-benzenetristriazolate), and Mg(2)(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate). Ideal adsorbed solution theory was used to estimate realistic isotherms for the 80:20 and 60:40 H(2)/CO(2) gas mixtures relevant to H(2) purification and precombustion CO(2) capture, respectively. In the former case, the results afford CO(2)/H(2) selectivities between 2 and 860 and mixed-gas working capacities, assuming a 1 bar purge pressure, as high as 8.6 mol/kg and 7.4 mol/L. In particular, metal-organic frameworks with a high concentration of exposed metal cation sites, Mg(2)(dobdc) and Cu-BTTri, offer significant improvements over commonly used adsorbents, indicating the promise of such materials for applications in CO(2)/H(2) separations.  相似文献   

14.
Four samples of active carbons with specific micropore volumes of 0.4—1.33 cm3g-1 at 77 K and pressures up to 5 MPa were used to study hydrogen adsorption. The highest amount of of hydrogen adsorbed on these active carbons at the boiling point 20.38 K and pressure 0.101 MPa was calculated by methods derived from the theory of volumetric filling of micropores (TVFM). The adsorbent FAS-1-05 prepared by the liquid-phase polymerization of furfurol was shown to have the highest adsorption capacity. The amounts of hydrogen adsorbed on FAS-1-05 at temperatures 77, 196, and 300 K and pressures 7 and 20 MPa were calculated using the TVFM methods with allowance for linearity of the isosters. The results were compared with the experimental values obtained at 77 K and pressure below 5.1 MPa and at 293 K and pressures up to 16.1 MPa. The highest amounts of hydrogen adsorbed (6.2 wt.% for the adsorbent FAS-1-05) were obtained under pressures below 5.1 MPa and at 77 K.  相似文献   

15.
16.
The infrared spectra of solid hydrogen sulfide (H2S) and deuterium sulfide (D2S) were collected at very low temperatures. Vapor deposition of thin films at the lowest temperature of 10 K produced amorphous solids while deposition at 70 K yielded the crystalline phase III. Infrared interference fringe patterns produced by the films during deposition were used to determine the film thickness. Careful measurement of the integrated absorbance peaks, along with the film thickness, allowed determination of the integrated band intensities. This report represents the first complete presentation of the infrared spectra of the amorphous solids. Observations of peaks near 3.915 and 1.982 microm (ca. 2554 and 5045 cm(-1), respectively) may be helpful in the conclusive identification of solid hydrogen sulfide on the surface of Io, a moon of Jupiter.  相似文献   

17.
18.
K. Naito  S. Takei 《Chromatographia》1973,6(8-9):339-344
Summary Alumina may be considerably modified by impregnating at 100°C in the alkali metal phosphate solution. The available solution for modification was the KOH–K2HPO4–AlPO4 (11.51M) solution or the NaOH–Na2 HPO4 (0.81.1 M or 11.5M) solution. The appreciable improvement on chromatograms was obtained by preheating of the alumina, especially above 800°C prior to impregnating A further modification may be made by ignition of the alumina impregnated. The x-ray diffraction studies revealed the phase transformation of the alumina inducing the modification, and the essential factor of the present modification method being the thermal treatment of the alumina at temperatures forming -alumina.  相似文献   

19.
The method of analysis for sulfate by reduction of high oxidation state sulfur to hydrogen sulfide, followed by spectrophotometric analysis, has the advantages of allowing small quantities to be measured and some interfering species to be removed. However, it has been found that acid digested samples cannot be analysed by this method due to destruction of the reduction mixture. A column of zirconium(IV) oxide was successfully used to both, remove interfering ions (H(+), Cl(-) and NO(-)(3)) from a sediment digest, as well as perform preconcentration of sulfate. Recoveries from digests of standard sulfur samples were 101 +/- 1%, and from preconcentration solutions 98.8 +/- 1.2%. Comparison of results with independent analyses confirmed that not all sulfur species are detected with the same efficiency by the combined zirconia/reduction-spectrophotometric method.  相似文献   

20.
High surface area silicon carbide-derived carbons (Si-CDCs) synthesized by chlorination of beta silicon carbide (βSiC) with two different particle sizes (6 μm and 50 nm) show different porosities with graphitic structure. Transmission electron microscopy, Raman spectroscopy and argon (Ar) and carbon dioxide (CO2) sorption analyses are used to examine the textural properties of the Si-CDCs. The results show that the particle size of the precursor affects the surface area and porosity of carbons. Furthermore, an additional heat treatment of the Si-CDC with 50-nm particle size for 24 h at 1,000 °C results in a collapse of the pore structure and reduces the surface area. The capacitive behaviours are investigated in H2SO4 and in tetraethyl ammonium tetrafluoroborate (TEABF4)/acetonitrile (AN). The electrochemical performance of the Si-CDCs is influenced by the particle size, surface area, pore volume and pore size distribution. The Si-CDCs exhibit capacitances in 1 M H2SO4 of up to 179 F g?1 and very stable charge–discharge performance over 5,000 cycles. This study shows the crucial importance of ultramicropores less than 1 nm combined with nanosized particles for achieving high capacitance in aqueous electrolyte. Moreover, the graphitic degree at the surface of the Si-CDCs enhances considerably the rate capability and stability in both electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号