首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The evolution of modulated structures in Fe-Cr-Co alloys during isothermal aging under an external magnetic field and multiple step aging was simulated based on a phase field method. In this simulation, the magnetic configuration during the decomposition was calculated by a micromagnetic method, and the chemical Gibbs energy function was calculated by the CALPHAD approach based on the experimental equilibrium phase diagram. The calculation results provide a quantitative microstructure change directly linked to the phase diagram and demonstrate obvious microstructure difference between isothermal aging and multiple aging. The ferromagnetic precipitates elongate along the direction of the external magnetic field. The simulated evolution and microstructure are in good agreement with the experimental results.  相似文献   

2.
We have investigated the ordering transformation and magnetic properties of Fe59.75Pt39.5Nb0.75 bulk alloys in detail by using different high-temperature homogenization treatments, different cooling rates and different low-temperature annealing treatments to obtain samples with different microstructure and different atomically ordered states. The quenching rate after the high-temperature homogenization treatment was chosen much lower than in previous investigations. In this way, we were able to obtain nanostructured bulk alloys consisting exclusively of the hard-magnetic face-centered-tetragonal phase. A high remanence ratio was obtained by profiting from the nanocomposite exchange coupling between nearest-neighbor-ordered regions. The present results are compared with results of previous investigations in which much higher cooling rates were applied. We also discussed why the present alloy systems are less suitable for the attainment of exchange spring behavior.  相似文献   

3.
Effect of alloying elements and heat treatments on magnetic properties and microstructures of Fe-Cr-10 wt% Co alloys was studied by magnetic measurements and transmission electron microscopy (TEM). Among the alloying elements tried, it was found that only Si and Ti can greatly improve the hard magnetic properties of the Fe-Cr-Co alloys. An Fe-10Co-26Cr alloy added with 0.5 wt% Si-0.5 wt% Ti showed the best combination of magnetic properties of Hc = 43 kA/m.Br = 1.42 T, (BH)m = 41 kJ/m3.The variation in magnetic properties was correlated to quantitative microstructural features, particle size and aspect ration. It was found that for alloys of the same composition, Hc is determined by shape anisotropy induced by magnetic aging.  相似文献   

4.
姚可夫  施凌翔  陈双琴  邵洋  陈娜  贾蓟丽 《物理学报》2018,67(1):16101-016101
非晶合金通常是将熔融的金属快速冷却、通过抑制结晶而获得的原子呈长程无序排列的金属材料.由于具有这种特殊结构,铁基软磁非晶合金具有各向同性特征、很小的结构关联尺寸和磁各向异性常数,因而具有很小的矫顽力H_c,但可和晶态材料一样具有高的饱和磁感强度B_s.优异的软磁性能促进了铁基软磁非晶合金的应用研究.目前,铁基软磁非晶/纳米晶合金带材已实现大规模工业化生产和应用,成为重要的高性能软磁材料.本文回顾了软磁非晶合金的发现和发展历程,结合成分、结构、工艺对铁基非晶/纳米晶合金软磁性能的影响,介绍了相关基础研究成果和工艺技术进步对铁基软磁非晶/纳米晶合金研发和工业化应用的重要贡献.并根据结构、性能特征将铁基软磁非晶合金研发与应用分为三个阶段,指出了目前铁基软磁非晶合金研发与应用中面临的挑战和发展方向.  相似文献   

5.
陈湘  陈云贵  唐永柏  肖定全  李道华 《物理学报》2014,63(14):147502-147502
由于一级相变磁制冷材料发生磁相变时有晶胞体积的突变,相变过程中有相变潜热存在,其磁化过程中有许多磁学问题有待于进一步探究.本文以LaFe13-xSix合金为研究对象,在现有对磁一级相变基础问题的分析基础上,对一级相变材料中系统熵变、等温熵变、绝热温变、热滞、磁滞、铁磁与顺磁态两相共存的温度区间和磁场区间、制冷能力的计算等磁学基础问题进行了较为细致的探究.分析表明,在忽略完全铁磁态和顺磁态对磁热效应的贡献时,Maxwell方程和Clausius-Clapeyron方程计算熵变的值具有等效性.等温磁化过程中升温和降温曲线包围的面积SABCE(磁滞的大小),实际上是升温过程和降温过程中磁场做的净功,等于相变潜热之差.磁滞和热滞的大小与磁化过程数据测量的时间有关,测量时间越长则滞后越小,当相变是平衡相变则滞后为零.另外,对温度和磁场诱导磁相变过程进行了分析,提出了一级相变磁制冷材料制冷能力的不同计算模型.本文对一级相变磁制冷材料的磁学基础问题研究有一定的参考价值.  相似文献   

6.
The structure and magnetic properties of amorphous melt-spun and subsequently crystallized GdNiAl ribbons were investigated. An amorphous phase was formed after the quenching process by melt spinning with a copper wheel having a surface speed of 30 m/s. A hexagonal phase with lattice parameters a=7.023 ? and c=3.916 ? was formed in the GdNiAl ribbon after annealing above its crystallization temperature. Magnetic entropy change was calculated directly from isothermal magnetic measurements. The results show that both the amorphous and annealed samples have a high magnetocaloric effect, indicating that these alloys can be considered as candidates for magnetic refrigeration applications. Received: 14 August 2001 / Accepted: 18 September 2001 / Published online: 23 January 2002  相似文献   

7.
《中国物理 B》2021,30(7):77404-077404
Magnetic stiffness determines the stability of a high-temperature superconductor(HTS) magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods. The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement, which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper, we study the influences of some physical and geometrical parameters, including the strength of the external magnetic field(B0) produced by a rectangular permanent magnet(PM), critical current density(Jc), the PM-to-HTS area ratio(α), and thickness ratio(β), on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC) conditions. In the first and second passes of the PM, the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases with β increasing in ZFC and FC. The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc, which is obviously different from the lateral force–Jc relation. The α-dependent lateral stiffness changes with some parameters, which include the cooling conditions of the bulk HTS, lateral displacement, and movement history of the PM. These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.  相似文献   

8.
The influence of interstitials and non magnetic impurities on the anomalous resistivity, thermopower and Kondo temperature of dilute magnetic alloys was investigated generalizing a model proposed by Bohnen and Fischer. Numerical results are given as a function of the distance between the interstitial (or non magnetic impurity) and the magnetic impurity using their scattering phase shifts as parameters. The Kondo anomalies are altered considerably, if the magnetic impurity is very close to the non magnetic scattering potential, e.g. if it is part of an interstitial dumbbell.This work is part of a doctoral thesis of G.Wehr at the Technische Universität München  相似文献   

9.
张雅楠  王有骏  孔令体  李金富 《物理学报》2012,61(15):157502-157502
本文通过铜模吸铸法和单辊甩带法分别制备出一系列楔形试样和非晶条带试样, 系统研究了稀土金属Y对Fe78Si9B13合金非晶形成能力及其软磁性能的影响. 结果表明, 少量Y取代 Fe-Si-B 非晶合金中的Fe 可大大提高该合金的非晶形成能力并促进过冷液相区的产生. 当Y含量为3 at.%时, 合金具有最大的非晶形成能力, 其临界厚度为313 μm, 相应的非晶过冷液相区宽度达到65 K. 该系列非晶合金具有优良的软磁性能, 其矫顽力(Hc)均低于200 A/m, Y含量为1 at.%时, 饱和磁感应强度(Bs) 达到最大值1.67 T.  相似文献   

10.
Both experimental and theoretical methods are used to obtain information on the local magnetic moments of atoms of all components of Fe-Cr-Co ferromagnetic alloys, which are important in practice.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 5–10, November, 1989.  相似文献   

11.
Microstructures and magnetic properties of Fe---Pt permanent magnets   总被引:2,自引:0,他引:2  
We have investigated the magnetic properties of Fe---38.5Pt, Fe---39.5Pt and Fe---50.0Pt (at%) alloys after various heat treatment conditions using a vibrating sample magnetometer, and correlated these properties with the microstructures of the alloys by transmission electron microscopy. The Fe---50Pt alloy shows poor magnetic hardness regardless of the heat treatment conditions. The magnetic hardness of the Fe---39.5Pt alloy shows a maximum value after annealing for 10 h at 873 K, while it monotonically decreases after annealing at 1073 K. The alloy with the highest coercivity was composed of a single phase γ1 with an average domain size of approximately 10 nm. The electron diffraction results indicate that the alloy is frustrated with accumulated stress, induced by a cubic → tetragonal transformation which occurs without twinning. On the other hand, when stress is relieved by twin formation after prolonged aging, the coercivity decreases. By annealing at 1073 K, the well known polytwin structure evolves. However, only poor hard magnetic properties are observed when this polytwin structure appears. Hence, the highest coercivity is attributed to the formation of nanoscale L10 ordered antiphase domains which is expected to be a highly anisotropic single domain magnetic particle.  相似文献   

12.
The present study concerns magnetic behavior of nanocrystalline Cu–Ni, Cu–Fe and Cu–Ni–Fe alloys prepared by mechanical alloying. It has been found that the magnetic properties e.g. Hc, Mr and Ms of the nanocrystalline alloys were significantly influenced by the changes in microstructural constituents, grain size and evolution of phases. Microstructural changes in the alloys have been effected by carrying out isothermal treatments on the mechanically alloyed products in the temperature range of 450–650 °C. Phase evolution in the samples after the isothermal treatments were identified and characterized by X-ray diffraction (XRD) and differential scanning calorimetric (DSC) techniques and the results were correlated with the magnetic properties of the alloys.  相似文献   

13.
In order to clarify the origin of the high thermal stability of the microstructure in bcc-Fe/amorphous two-phase nanocrystalline soft magnetic materials, we have investigated the changes in the magnetic and microstructural properties upon isothermal annealing at 898 K for an Fe89Zr7B3Cu1 alloy by means of transmission electron microscopy, Mössbauer spectroscopy and DC magnetometry. The mean grain size was found to remain almost unchanged at the early stage of annealing. However, rapid grain coarsening was evident at an annealing time of 7.2 ks where the intergranular amorphous phase begins to crystallize into Fe23Zr6. The grain growth process with a kinetic exponent of 1.6 is observed for the growth process beyond this annealing time, reflecting the disappearance of the intergranular amorphous phase. Our results confirm that the thermal stability of the bcc-Fe/amorphous two-phase nanocrystalline soft magnetic alloys is governed by the residual amorphous phase.  相似文献   

14.
Electron microscopy, x-ray diffraction analysis, Mössbauer spectroscopy, and magnetic measurements are used to establish, study, and systematize 12 basic types of fine crystalline structure (FCS) formed as a result of magnetic decomposition in bcc alloys which are based on the system Fe-Cr-Co (mono- and polycrystalline) and differ greatly in the form and mutual location of regions of strongly and weakly magnetic phases and the associated remagnetization mechanisms and magnetic properties. The conditions and mechanism of formation of each type of FCS are studied. It is shown that it is possible to obtain transitional types of FCS's and that, through the use of different types of FCS's, it is possible to control the parameters of the hysteresis loop.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 69–73, June, 1989.  相似文献   

15.
高鹏飞  刘铁  柴少伟  董蒙  王强 《物理学报》2016,65(3):38104-038104
实验研究了磁感应强度和冷却速率对Tb_(0.27)Dy_(0.73)Fe_(1.95)合金凝固过程中(Tb,Dy)Fe_2相取向行为及合金磁性能的影响.结果表明,将强磁场作用于Tb_(0.27)Dy_(0.73)Fe_(1.95)合金的凝固过程可以制备出(Tb,Dy)Fe_2相沿111取向的组织,同时显著提高了合金的磁致伸缩性能;通过提高磁感应强度可以在更快的冷却速率下得到111取向的组织;在4-10 T范围内,随着冷却速率的增加,(Tb,Dy)Fe_2相沿111取向所需的磁感应强度增加,而发生(110)取向的磁感应强度减小.随着冷却速率的增加,合金的饱和磁化强度增加,而强磁场的施加对合金饱和磁化强度的变化没有明显影响.(Tb,Dy)Fe_2相的取向行为受*Tb,Dy)Fe_3相取向行为的影响,且由磁晶各向异性能与磁场作用时间共同控制.  相似文献   

16.
The effects of microstructural evolution during isothermal annealing on structure-sensitive magnetic properties and Barkhausen noise (BN) characteristics have been investigated for 12% CrMoV steel. A rapid decrease in coercive force, remanence, hysteresis loss and hardness took place in accordance with the release of internal stresses from supersaturated martensite after annealing for only 20 minutes at 923 K. BN energy is correspondingly related with three stages of microstructural evolution such as the recovery of strain energy, the increase of precipitates size as a result of Ostwald ripening and the annihilation of dislocation density during isothermal annealing of the specimen. The linear relation between hardness and BN parameters in the magnetization region of irreversible domain wall displacement of 2.4 kA/m suggests that hardness and microstructural evolution could well be evaluated nondestructively by using BN measurements.  相似文献   

17.
A theory of disordered binary alloys AxB1−x (A=Ni, Co; B=Fe; x0.06) is used to determine the changes in the electronic structure and magnetic properties of body centered cubic (BCC) iron induced by doping with nickel and cobalt impurities. This approximation is an extension of the cluster-Bethe lattice method, in which we incorporate electronic correlations, itinerant and localized nature of electrons 3d, and both long-range and short-range chemical correlations. The magnetism is described by means of a Hubbard Hamiltonian that in conjunction with Green's functions techniques is used to calculate local densities of electronic states. For it we take an atom in the real lattice and it is joined to a Bethe's lattice with like coordination number. The magnetic moments on sites occupied for A and B atoms are obtained self-consistently. Nickel and cobalt impurities in BCC iron can provide crucial information on the modification of the electronic band structure and magnetic moments from pure Fe. The results obtained are compared with those of both pure Fe and binary alloys of Co–Fe and Ni–Fe, which have been obtained by other authors using methods such as: first-principles electronic structure calculations using the layer Korringa–Kohn–Rostoker (KKR), the full-potential linearized augmented plane wave method, the KKR coherent potential approximation combined with the local-density functional method and by the tight-binding linear-muffin-tin orbitals method, obtained good agree. These results and other that recently we have published indicate to us that our methodology can be a new alternative for calculations of the electronic structure and magnetic properties of impurities and alloys of ferromagnetic transition metals.  相似文献   

18.
陈湘  赵明骅 《物理学报》2018,67(19):197501-197501
通过等温磁化曲线和等磁场变温曲线测量与标度理论,系统研究了CeFe_(2-x)In_x合金的磁性和CeFe_(1.95)In_(0.05)合金的磁相变临界参数.结果表明:用2.5 at.%的铟替代CeFe_2合金中的铁并不能使合金中的反铁磁态在低温下完全稳定,低场下在2—80 K均能观察到反铁磁相振荡; CeFe_2与CeFe_(1.95)In_(0.05)合金的顺磁-铁磁二级相变居里温度均在230 K附近;在0—5 T磁场范围内, CeFe_(1.95)In_(0.05)合金居里温度处的最大磁熵变为3.13 J/(kg·K),相对制冷量为151.3 J/kg.通过不同方法得到的具有高度自洽性的磁相变标度临界参数均表明CeFe_(1.95)In_(0.05)合金的磁相互作用可以用基于短程相互作用的3D-Ising模型来描述.  相似文献   

19.
Laser surface melting (LSM) is known to enhance the wear and corrosion resistance of Mg alloys, but its effect on microstructural evolution of Mg alloys is not well understood. An effort has been made to study the effect of rapid solidification following LSM on the microstructural evolution of AZ91D Mg alloy. The results of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy indicated that the solidification microstructure in the laser-melted zone was mainly cellular/dendrite structure of primarily α-Mg phase and continuous network of β-Mg17Al12 phase. Numerical prediction of the laser-melted zone suggested that cooling rates increased strongly from the bottom to the top surface in the irradiated regions. An attempt has been made to correlate dendrite cell sizes of the solidification microstructure with the cooling rates in the laser-treated AZ91D Mg alloy.  相似文献   

20.
张元磊  李哲  徐坤  敬超 《物理学报》2015,64(6):66402-066402
利用电弧炉制备了Ni50-xFexMn37In13(x=1, 3, 5) 多晶样品, 通过结构和磁性测量, 系统分析了Ni50-xFexMn37In13(x=1, 3, 5)样品的晶体结构和马氏体相变. 结果表明, 三样品在室温下呈现出了不同的晶体结构. 同时, 随着Fe含量的增加, 样品的马氏体相变温度急剧下降, 而铁磁性却逐渐增强. 研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应. 在外加3 T的磁场下, 两样品在反马氏体相变区域所表现出的磁电阻效应分别约为-46%和-15%, 而等温熵变则约为6 J·kg-1·K-1和9.5 J·kg-1·K-1. 然而, 伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号