首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Summary: The aim of the study was to investigate the variation in total surface area, porosity, pore size, Knudsen and surface diffusion coefficients, gas permeability and selectivity before and after the application of sol-gel process to porous ceramic membrane in order to determine the effect of pore modification. In this study, three different sol-gel process were applied to the ceramic support separately; one was the silica sol-gel process which was applied to increase porosity, others were silica-sol dip coating and silica-sol processing methods which were applied to decrease pore size. As a result of this, total surface area, pore size and porosity of ceramic support and membranes were determined by using BET instrument. In addition to this, Knudsen and surface diffusion coefficients were also calculated. After then, ceramic support and membranes were exposed to gas permeation experiments by using the CO2 gas with different flow rates. Gas permeability and selectivity of those membranes were measured according to the data obtained. Thus, pore surface area, porosity, pore size and Knudsen diffusion coefficient of membrane treated with silica sol-gel process increased while total surface area was decreasing. Therefore, permeability of ceramic support and membrane treated with silica sol-gel process increased, and selectivity decreased with increasing the gas flow rate. Also, surface area, porosity, pore size, permeability, selectivity, Knudsen and surface diffusion coefficients of membranes treated with silica-sol dip coating and silica-sol processing methods were determined. As a result of this, porosity, pore size, Knudsen and surface diffusion coefficients decreased, total surface area increased in both methods. However, viscous flow and Knudsen flow permeability were detected as a consequence of gas permeability test and Knudsen flow was found to be a dominant transport mechanism in addition to surface diffusive flow owing to the small pore diameter in both methods. It was observed that silica-sol processing method had lower pore diameter and higher surface diffusion coefficient than silica-sol dip coating method.  相似文献   

2.
A series of regenerated cellulose membranes with pore diameters ranging from 21 to 52 nm have been prepared by dissolving cellulose in 5 wt% LiOH/12 wt% urea aqueous solution re-cooled to −12 °C. The influences of cellulose concentration on the structure, pore size, and the mechanical properties of the membrane were studied by using Wide angle X-ray diffraction, scanning electron micrography and tensile testing. Their pore size, water permeability, equilibrium-swelling ratio and fouling behaviors of the cellulose membranes were characterized. The water-soluble synthetic and natural polymers as organic matter were used to evaluate the microfiltration performance of the regenerated cellulose membrane for wastewater treatment in aqueous system. The results revealed that the organic matter with molecular weight more than 20 kDa effected significantly on the membrane pore density, and reducing factor a 2, whereas that having molecular weight less than 20 kDa exhibited a little influence on the membrane pore size reducing factor a 1. Furthermore, a simple model to illustrate of microfiltration process of the RC membrane for wastewater treatment was proposed.  相似文献   

3.
《先进技术聚合物》2018,29(4):1303-1312
New thin film composite (TFC) membrane was prepared via coating of Pebax on PSf‐PES blend membrane as support, and its application in wastewater treatment was investigated. To modify this membrane, hydrophilic TiO2 nanoparticles were coated on its surface at different loadings via dip coating technique. The as‐prepared membrane was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), field emission SEM, and contact angle analysis. The Fourier transform infrared spectroscopy analysis and surface SEM images indicated that TiO2 was successfully coated on the membrane surface. In addition, the results stated that the hydrophilicity and roughness of membrane surface increased by addition of TiO2 nanoparticles. Performance of TFC and modified TFC membranes was evaluated through humic acid removal from aqueous solution. Maximum permeate flux and humic acid rejection were obtained at 0.03 and 0.01 wt% TiO2 loadings, respectively. Rejection was enhanced from 96.38% to 98.92% by the increase of feed concentration from 10 to 30 ppm. Additionally, membrane antifouling parameters at different pressures and feed concentration were determined. The results indicated that surface modification of membranes could be an effective method for improvement of membrane antifouling property.  相似文献   

4.
Titania ultrafiltration membranes were successfully fabricated by a new route, which was directly derived from the nanoparticles suspension that was the intermediate product prior to dry and calcine in the synthesis of nanoparticle by a wet chemical method. The morphology and the crystal structure of the prepared membrane were analyzed by SEM and XRD. The effect of various dipping time on the membrane thickness was investigated. The rejection of the bovine serum albumin (BSA, 67,000 Da) was used to evaluate the separation characteristics of these membranes, and the relationship between the dipping time and the optimization thickness of the membrane was built on the base of the data of the pure water flux. SEM images showed that the surface of the membrane was defect-free and XRD revealed that the titania crystalline phase was pure anatase. The membrane thickness increased linearly with the square root of the dipping time and the dipping time of 30 s was necessary to form a defect-free titania layer on the top of supports. The titania layer derived from the dipping time of 30 s could be of thickness of 5.9 μm and an average pore size of 60 nm. The pure water permeability of the membrane was 860 × 10−5 L/(m2 h Pa) (860 L/(m2 h bar)), and the BSA rejections of the membranes prepared reached to 90% after 20 min running.  相似文献   

5.
Blend hydrophilic polyamide imide (PAI)-sulfonated poly (ether ether keton) (SPEEK) hollow fiber membranes were fabricated for oil-water emulsion separation. The structure and performance of the membranes were examined by FESEM analysis, N2 permeation, overall porosity, collapsing pressure, water contact angle, pure water flux, molecular weight cutoff (MWCO), and oil rejection tests. By studying ternary phase diagrams of polymer/solvent-additive/water system, the higher phase-inversion rate was confirmed for the solutions prepared at higher PAI/SPEEK ratio. A more open structure with larger finger-likes was observed by increasing PAI/SPEEK ratio. Mean pore size of 81 nm, overall porosity of 79% and water contact angle of 58° were obtained for the improved membrane prepared by PAI/SPEEK ratio of 85/15. Increasing SPEEK ratio resulted in lower mechanical stability in terms of collapsing pressure. Pure water flux of about 2.5 times of the plain PAI membrane was found for the improved membrane. MWCO of 460 kDa was found for the improved blend membrane. From oil rejection test, all the membranes demonstrated an oil rejection of over 95%. The improved membrane showed a lower rate of permeate flux reduction compared to the plain membrane which was related to the smaller fouling possibility. Less fouling resistance of the improved membrane was related to the higher flux recovery ratio (about 92%). For all the membranes, the dominant fouling mechanism was found to be the cake filtration. The improved PAI-SPEEK hollow fiber membranes was found to be practical for ultrafiltration of oily wastewaters.  相似文献   

6.
This study investigated the ultrafiltration of soybean oil/hexane extract (miscella) using porous ceramic membrane. The evaporation energy can be saved in the soybean oil production by pre-separating a portion of hexane through the ceramic membrane. Raw soybean oil/hexane extract with 33 wt% of oil was used without pretreatment. A cross-flow ultrafiltration was performed using an anodisc membrane with a pore diameter of 0.02 μm and thickness of ∼1 μm. The concentrations of oil/hexane mixture were measured by UV adsorption at a wavelength of 458 nm. The separation mechanism was suggested to be the hindrance diffusion of soybean oil. Agitation in the feed side significantly increased the rejection of soybean oil. A small stage cut could also yield a higher rejection. Above observations were attributed to the reduction of concentration polarization by increasing the shear rate and small permeate flux, respectively. The optimum separation was achieved under the conditions of 4 kg/cm2 transmembrane pressure, 0.04 stage cut and 120 rpm agitation speed. The concentration of soybean oil decreased from 33 wt% of feed to 27 wt% in permeate, that is, near 20% rejection. A gel-layer polarization model was proposed to estimate the gel concentration and thickness. The gel concentration was found 43–53 wt%. Agitating feed side reduced gel thickness, thus enhanced the rejection and permeate flux.  相似文献   

7.
New ceramic membranes from calcinated clay. The aim of the present work is to obtain porous tubular ceramic membranes from natural material. The clay powders were calcinated in air at 900 °C for two hours. The resulting powders mixed with certain organic additives could be extruded to fabricate a porous tubular configuration with highly uniform porous structures. The mean pore diameter, measured by mercury porosimetry, is equal to 9 μm and the porosity is 38% (heat treatment at 1130 °C for two hours). Many ceramic membrane manufactures have used this type of large-pore membrane as supports for finer-pore membranes (microfiltration or ultrafiltration). Porous membranes possess very good mechanical strength and negligible flow resistance for the membrane/support, while containing pores which allow a high degree of permeation.  相似文献   

8.
Hydrous manganese dioxide (HMO) nanoparticles incorporated cellulose acetate (CA) composite ultrafiltration (UF) membranes are prepared with the aim of improving the water permeation and BSA contaminant removal. The HMO nanoparticles are synthesized from manganese ion and characterized by FT‐IR, XRD, and FESEM. The effect of variation of HMO on CA membranes is probed using FT‐IR, EDAX, contact angle, SEM, and AFM analysis to demonstrate their chemical functionality, hydrophilicity, and morphology. CA/HMO membranes are showing the enhancement in pure water flux (PWF), water uptake, porosity, hydrophilicity, fouling resistance, BSA rejection, and flux recovery ratio (FRR). CA‐1 membrane displayed higher PWF (143.6 Lm2h?1), BSA rejection (95.9%), irreversible fouling (93.3%), and FRR (93.3%). Overall results confirmed that the CA/HMO nanocomposite UF membranes overcome the bottlenecks and shows potential for water treatment applications.  相似文献   

9.
This paper describes the optimization of the operation of an ultrafiltration cell filtering plasma proteins on the basis of the economic criteria of Shen and Probstein. The optimum hydrodynamic parameters were determined on a pilot ultrafiltration unit which was equipped with either an organic tubular PCI BX6 with 20 000 daltons molecular weight cut-off or mineral Ceraver P 19–40 membranes with an average pore radius size of 500 Å. Optimum parameters corresponding to average transmembrane pressures of 3 and 4 bar and tangential flow rates of 5.4 and 0.5 m/s for Ceraver and PCI membranes, respectively, were established. The organic PCI BX6 membrane appeared more efficient than the ceramic Ceraver membrane. Experimental data for fouling and rejection coefficient are presented. High apparent rejection coefficients of the Ceraver membrane attained indicated that a dynamic membrane was formed which altered the molecular weight cut-off of the virgin membrane. The potential uses of the process for pollution control applications and cleaning of the ultrafiltration membranes are presented.  相似文献   

10.
11.
Various ultrafiltration and nanofiltration membranes were characterized by solute transport and also by atomic force microscope (AFM). The molecular weight cut-off (MWCO) of the membranes studied were found to be between 3500 and 98,000 Daltons. The mean pore size (μp) and the geometric standard deviation (σp) around mean ranged from 0.7 to 11.12 nm and 1.68 to 3.31, respectively, when calculated from the solute transport data. Mean pore sizes measured by AFM were about 3.5 times larger than calculated from the solute transport. Pore sizes measured by AFM were remarkably fitted to the log-normal probability distribution curve. Pore sizes of the membranes with low MWCO (20,000 Daltons and lower) could not be measured by AFM because of indistinct pores. In most cases, the pore density ranged from 38 to 1291 pores/μm2. In general, the pore density was higher for the membrane having lower MWCO. Surface porosity was around 0.5–1.0% as measured from the solute transport and was 9.5–12.9% as obtained from AFM images. When membranes were coated with a thin layer of sulfonated polyphenylene oxide, mean pore sizes were reduced for all the membranes. Surface roughness was also reduced on coating.  相似文献   

12.
In this study, a new type of a double-layer ceramic membrane was used for the filtration of wastewater. The synthesized membrane consists of a macroporous substrate (with pore size of about 0.1 μm) prepared following the colloid filtration technique and a thin film functional layer (with pore size of about 10 nm) carried out according to the sol–gel preparation method.The ceramic membranes were tested for the removal of cadmium, zinc, Methylene Blue and Malachite Green from water under a pressure of 5 bar and a treatment time of 2 h. Liquid filtration and flow tests through these membranes resulted in a rejection rate of 100% for Methylene Blue and Malachite Green. This paper also presents the ability of the tubular membrane prepared to separate heavy metals (cadmium and zinc) from their synthetic aqueous solutions. The influence of the applied pressure, feed solute concentration, feed pH on the rejection of cadmium and zinc ions was studied. Retention rates of cadmium and zinc ions of 100% were observed for an initial feed concentration of 10−4 mol/L.  相似文献   

13.
Coating by a mussel inspired polydopamine (PDA) is a simple and promising strategy to modify the hydrophilicity of polymer membrane surfaces. In this work, PDA coating was used to modify polypropylene (PP) ultrafiltration hollow fiber membrane. PDA coating parameters, ie, solution concentration and coating time were varied, and the effect of those parameters on membrane morphology, porosity, water contact angle, and pure water flux was investigated. In addition, air‐assisted PDA coating process was also conducted by channelling the air through PP membrane to avoid pore blocking and prevent water flux decline. The results showed that PDA coating successfully improved the hydrophilicity of PP membrane indicated by the decrease of water contact angle from 110° to 67° after coated by 3 g/L of PDA solution for 3 hours. The addition of air permeation on membrane lumen also increased pure water flux up to 511.2 L/m2.h, a 270% increase from unmodified PP membrane. It might be associated to the pore blocking prevention that has been proven by SEM image and the membrane porosity that was increased about 4%.  相似文献   

14.
Novel inorganic membranes were prepared from clay (sepiolite) suspensions, which were formed by dispersing clay particles in water either by applying ultrasonic wave or by magnetic stirring. Films can be formed easily from such suspensions due to fibrous nature of sepiolite. Thus, this offers a method much simpler than the conventional sol–gel method. The membranes were further tested for ultrafiltration of polyethylene glycol and polyethylene oxide solutes of different molecular weights. It was found that the correlation between the separation and the Einstein–Stokes radius of solute fits the log-normal distribution very well. The mean pore size of 23–26 nm and the standard deviation of 1.91–2.04 were obtained from the above correlation. It was also found that the mean pore size and the pore size distribution did not depend very much on the membrane preparation method.  相似文献   

15.
The overall objective of this investigation is to achieve high‐performance membranes with respect to flux and rejection characteristics, with an interplay of blending polymers having desired qualities. Thus, cellulose diacetate and polyethersulfone as candidate materials, in the presence of polyethylene glycol 600 as a pore forming agent, were blended in 100/0, 95/5, 90/10, 85/15, 80,20 and 75/25% compositions using N,N′‐dimethylformamide as solvent and membranes were prepared by the phase inversion technique. Polymer blend composition, additive concentration, and casting and gelation conditions were standardized for the preparation of asymmetric membranes with various pore statistics and morphology. These blend membranes were characterized for compaction in ultrafiltration experiments at 414 kPa pressure in order to attain steady state flux and is reached within 4–5 hr. The pure water flux was measured at 345 kPa pressure and is determined largely by the composition of polyethersulfone and additive concentration. The flux was found to reach the highest values of 66.5 and 275 1/(cm2 hr) at 0 and 10 wt% additive concentrations respectively, at 25% SPS content of the blend. Membrane hydraulic resistance derived by measuring water flux at various transmembrane pressure and by using an algorithm was found to be inversely proportional to pure water flux. Water content is estimated by simple drying and weighing procedures and found proportional to pure water flux for all the membranes. The molecular weight cut‐offs (MWCOs) of different membranes were determined with proteins of different molecular weights and found to vary from 20–69 kDa (globular proteins) depending on the PEG and SPS content in the casting dope. Skin surface porosity of the membranes were analyzed by scanning the frozen membrane samples using scanning electron microscopy (SEM) at different magnifications. The surface porosity is in direct correlation to the MWCO derived from solute retention experiments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A novel crystalline nano cellulose (CNC) and polyvinyl amine (PVAm) based nanocomposite membranes were synthesized and evaluated for biogas upgrading. Different concentrations of CNC was incorporated in 3 wt % PVAm solution on commercial polysulfone (PSf) sheet using dip coating method. The effect of feed pressure (5, 10 and 15 bar) was investigated for the CO2/CH4 separation. The incorporation of CNC increased the crystallinity of membranes. The thickness of selective layer enhanced to 2.16 μm from 1.5 μm with increasing concentration of CNC. However, degree of swelling reduced from 75.88% to 68.93 with CNC concentration at 1.5 wt%. The best results were shown by PVAm membrane with 1 wt % CNC concentration i.e. CO2 permeance of 0.0216 m3(STP)/m2.bar.hr and selectivity (CO2/CH4) of 41.The permeance decreased approximately 1.8 folds for PVAm/1CNC membrane with the increase in pressure from 5 to 15 bar. However, selectivity dropped from 41 to 39 for formulated membranes.  相似文献   

17.
Bacterial attachment on reactive ceramic ultrafiltration membranes   总被引:1,自引:0,他引:1  
Bacterial attachment is an initial stage in biofilm formation that leads to flux decline in membrane water filtration. This study compares bacterial attachment among three photocatalytic ceramic ultrafiltration membranes for the prevention of biofilm formation. Zirconia ceramic ultrafiltration membranes were dip-coated with anatase and mixed phase titanium dioxide photocatalysts to prevent biofilm growth. The membrane surface was characterized in terms of roughness, hydrophobicity, bacterial cell adhesion, and attached cell viability, all of which are important factors in biofilm formation. The titanium dioxide coatings had minimal impact on the membrane roughness, reduced the hydrophobicity of membranes, prevented Pseudomonas putida attachment, and reduced P. putida viability. Degussa P25 is a particularly promising reactive coating because of its ease of preparation, diminished cell attachment and viability in solutions with low and high organic carbon concentrations, and reduced flux decline. These reactive membranes offer a promising strategy for fouling resistance in water filtration systems.  相似文献   

18.
Cellulose acetate (CA) microfiltration membranes were prepared by two‐stage vapor‐induced phase separation (VIPS) and immersion precipitation. To improve the hydrophilicity and permeability of the membranes at low operating pressures, plasma‐treated natural zeolite was incorporated into the membranes. A response surface methodology based on the three‐level central composite design (CCD) was used to model and optimize the casting solution composition of the membranes with the aim of maximizing membranes permeability. Three independent variables for CCD optimization were concentration of CA, polyvinylpyrrolidone (PVP) pore former, and plasma‐treated zeolite additive. The results showed that a second‐order polynomial model could properly predict the response (pure water flux) at any input variable values with a satisfying determination coefficient (R2) of 0.954. Also, analysis of variance (ANOVA) confirmed the adequacy of the obtained model. The permeability of the prepared membranes increased by increasing zeolite loading from 0.10 to 0.50 wt%, which was related to the membranes morphology and porosity and confirmed by scanning electron microscopy (SEM) images. Pure water flux of the membranes decreased by increasing CA concentration while an optimum PVP amount was required to reach the maximum flux. The result of the bubble point analysis well matched with surface SEM images of the membranes and permeability trend predicted by CCD model. Also, the prepared CA membranes with different compositions showed no toxicity for mouse L929 fibroblast, which indicated their nontoxic and biocompatible nature.  相似文献   

19.
The influence of inorganic filler TiO2 nanoparticles on the morphology and properties of polysulfone (PS) ultrafiltration membranes was investigated. PS/TiO2 composite membranes were prepared by a phase‐inversion method. TiO2 nanoparticles modified by sodium dodecyl sulfate were uniformly dispersed in an 18 wt % PS casting solution. The addition of TiO2 resulted in an increase in the pore density and porosity of the membrane skin layer. The pore size distribution changed from the log‐normal distribution to the bimodal distribution because of the presence of TiO2 nanoparticles, and some large pores were observed when the concentration of the filler was over 3 wt %. The skin layer was gradually thickened; meanwhile, the morphology sublayer changed from macrovoids to spongelike pores, in comparison with PS membranes without the filler. The addition of TiO2 also induced increases in the hydrophilicity, mechanical strength, and thermal stability. The ultrafiltration experiments showed when the concentration of TiO2 was less than 2 wt %, the permeability and rejection of the membrane was enhanced and then decreased drastically with a higher filler concentration (>3%). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 879–887, 2006  相似文献   

20.
Ultrafiltration membranes are largely applied in the separation of heavy metal ion and macromolecular solutes from aqueous streams. Studies are presented on ultrafiltration blend membranes, based on cellulose acetate (CA) and polyetherimide (PEI) in various blend compositions. Polyethylene glycol (PEG 600) was employed as a non‐solvent additive in various concentrations to the casting solution to improve the ultrafiltration performance of the resulting membranes. The blend membranes prepared were characterized in terms of compaction time, pure water flux (PWF), water content, membrane resistance, and scanning electron microscopy (SEM). The molecular weight cut‐off (MWCO) obtained from the protein separation studies is also reported. Applications of these membranes for separating toxic metal ions from aqueous streams are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号