共查询到19条相似文献,搜索用时 46 毫秒
1.
对基于短电子束脉冲超辐射机理的X波段相对论返波管进行了优化设计和粒子模拟,结果表明:在超辐射机理作用下,该器件能实现高峰值功率和高功率转换效率的微波辐射。在小型Tesla脉冲源基础上设计了阻抗变换段、二极管、磁场系统等装置,建立了一套小型窄脉冲电子加速器,以此为实验平台在低磁场条件下进行了器件的初步实验研究。在磁场0.73 T、束压约380 kV、束流约4.5 kA、脉宽3.1 ns条件下,实验获得的微波脉冲峰值功率约360 MW,脉宽1.10 ns,上升沿800 ps,频率9.15 GHz,功率转换效率为21%。 相似文献
2.
运用超辐射机理,通过粒子模拟设计了X波段超辐射相对论返波管,并在小型Tesla脉冲源平台上开展了实验研究。通过空间功率积分和直接对辐射微波时域波形的分析得到实验结果:在束压350 kV、束流4.8 kA、脉宽3.1 ns、引导磁场2.2 T条件下,产生的微波辐射功率1.4 GW,中心频率9.36 GHz,脉宽500~700 ps,辐射模式为TE11,能在重复频率100 Hz下稳定运行。功率转换效率超过80%。实验结果与粒子模拟结果比较吻合,成功实现了在短脉冲条件下产生重复频率、亚纳秒脉宽、GW级微波辐射。 相似文献
3.
从抑制强场击穿的角度出发,结合传统理论和相关粒子模拟方法,设计并优化了工作于C波段的长脉冲相对论返波管。模拟中,利用强流相对论电子束的空间电荷场效应,将3 GW功率水平下电动力学结构表面的最大发射电场控制在700 kV/cm以下。利用实验室700L脉冲功率驱动源平台开展了相关实验验证,实验结果表明,通过合理的结构设计,在功率3 GW级水平下,C波段相对论返波管中的脉冲缩短问题能够得到有效抑制。实验中,当工作电压760 kV、电流为9.0 kA时,在4.23 GHz频点处获得的输出微波功率为2.8 GW,微波脉冲半高宽约101 ns,功率转换效率约41%,实验结果与模拟结果吻合较好。 相似文献
4.
运用超辐射机理,通过粒子模拟设计了X波段超辐射相对论返波管,并在小型Tesla脉冲源平台上开展了实验研究。通过空间功率积分和直接对辐射微波时域波形的分析得到实验结果:在束压350 kV、束流4.8 kA、脉宽3.1 ns、引导磁场2.2 T条件下,产生的微波辐射功率1.4 GW,中心频率9.36 GHz,脉宽500~700 ps,辐射模式为TE11,能在重复频率100 Hz下稳定运行。功率转换效率超过80%。实验结果与粒子模拟结果比较吻合,成功实现了在短脉冲条件下产生重复频率、亚纳秒脉宽、GW级微波辐射。 相似文献
5.
基于TPG2000强流电子束加速器和带谐振反射器的相对论返波管振荡器,开展了X波段高功率微波产生实验研究,获得了功率约2.5 GW,脉宽约20 ns的微波输出。理论分析及模拟了不同倒角大小对谐振反射器的表面电场及截止性能的影响,并对不同倒角开展了实验研究。结果表明,对谐振反射器倒角可增加输出微波脉冲宽度,且随着倒角增加,微波脉宽增加,效率略有降低。在谐振反射器倒角5 mm情况下,利用电压900 kV,电流9 kA的强流电子束,实验获得了功率约2.5 GW、脉宽大于25 ns的微波输出。 相似文献
6.
X波段相对论返波管谐振反射器 总被引:4,自引:4,他引:0
基于TPG2000强流电子束加速器和带谐振反射器的相对论返波管振荡器,开展了X波段高功率微波产生实验研究,获得了功率约2.5 GW,脉宽约20 ns的微波输出。理论分析及模拟了不同倒角大小对谐振反射器的表面电场及截止性能的影响,并对不同倒角开展了实验研究。结果表明,对谐振反射器倒角可增加输出微波脉冲宽度,且随着倒角增加,微波脉宽增加,效率略有降低。在谐振反射器倒角5 mm情况下,利用电压900 kV,电流9 kA的强流电子束,实验获得了功率约2.5 GW、脉宽大于25 ns的微波输出。 相似文献
7.
8.
变阻抗相对论返波管的粒子模拟研究 总被引:3,自引:3,他引:0
设计了一种X波段耦合阻抗单阶跃变型相对论返波管结构,运用2.5维全电磁粒子程序模拟分析了器件中注波互作用过程,仿真了器件效率与电子注参数的依赖关系,得到了器件在500kV,5.5kA电子注驱动下,能辐射出峰值功率800MW,频率为(9.16±0.03)GHz的微波,工作模式为TM01模式,效率为30%。在截止波导与慢波结构之间设置一段长度合适的光滑漂移段,通过改善正向波基波对电子注的初始调制效果,器件最优化效率可进一步提高到38%。 相似文献
9.
10.
本文对一种高效率速调型RBWO进行了理论分析和实验研究.通过理论分析,给出两个预调制腔间距的选择依据;提出一种高功率容量的椭圆形提取腔,可使得提取腔内表面场强降低约25%;分析了磁场分布对效率的影响,结果表明:使用特殊设计的引导磁场,可克服器件转换效率对收集位置的强烈依赖;分析了阴阳极间距对效率的影响,结果表明:随着阴阳极间距增大,器件的最优工作电压降低,并且效率有所提升.在实验中获得X波段微波功率为2.15 GW,脉宽达到25 ns,转换效率为50%(±5%).实验结果与理论和数值模拟结果吻合. 相似文献
11.
磁压对级联爆磁压缩脉冲发生器性能的影响 总被引:1,自引:1,他引:0
为了研究负载为mH量级的间接馈电两级级联柱-锥构型的爆磁压缩产生器的基本物理过程和能量转换机理,利用描述爆磁压缩物理过程的2维爆轰磁流体力学程序MFCG(Ⅴ),以实验模型结构参数为基础模拟计算了一系列模型,分析了磁压对金属套筒径向膨胀速度及膨胀过程的影响。计算结果表明:套筒的径向膨胀速度取决于爆轰压与磁压的共同作用,在爆磁压缩过程的绝大部分时间里,向外膨胀的爆轰压都远大于向内压缩的磁压,因而套筒的径向膨胀速度主要是由爆轰压决定;但是在功率放大级的后半段,也就是发生器电流增长最快阶段,磁压也迅速增长,它的增长大大降低了套筒的径向膨胀速度;在功率放大级的后期,磁压已经超过爆轰压,它对系统设计的影响已经不能完全忽略。 相似文献
12.
13.
谐振腔反射器到慢波结构输入端之间的漂移段长度对返波管效率有较大影响,文章对该影响进行了理论分析和数值模拟。结果表明:由于谐振腔反射器对电子束的预调制作用,返波管输出功率随漂移段长度的增加而呈现多峰值现象,在选取合适的漂移段长度时,可以显著提高其微波产生的效率。在SINUS-881加速器上开展实验,在引导磁场为0.7 T,漂移段长度为4.9 cm的条件下,实验获得了功率为700 MW,频率为8.7 GHz,脉宽20 ns的微波输出,效率约14%。实验研究证实了模拟结果的正确性。 相似文献
14.
双频相对论返波振荡器的数值模拟 总被引:4,自引:4,他引:0
提出了X波段双频两段式同轴相对论返波振荡器的物理模型,推导了该结构在冷腔时的TM0n模式色散方程,数值求解了两段式同轴波纹慢波结构TM01模色散曲线;用粒子模拟软件对其结构和电磁参数进行分析研究,优化得到的结构参数为第一、二段分别为10个和4个周期数,周期长度分别为0.50 cm和 0.73 cm,波纹幅值分别为0.13 cm和0.21 cm,平均半径为2.9 cm,同轴间隙为2.1 cm。结果表明:在环形相对论电子注电压为510 kV、电流为9.4 kA,引导磁场为0.7 T的条件下,器件得到了X波段稳定的高功率双频微波输出,其平均功率约为0.75 GW,平均功率效率为15.6%。 相似文献
15.
紧凑型L波段同轴相对论返波振荡器的粒子模拟 总被引:5,自引:4,他引:1
设计了紧凑型L波段同轴相对论返波振荡器,通过粒子模拟研究了L波段同轴相对论返波振荡器相互作用的物理过程,并对器件的电磁结构进行了优化和改进。分析表明,采用同轴慢波结构可以在较低的外加磁场下实现L波段返波振荡器的微波输出,同时可以大大减小微波器件的径向尺寸。这是因为同轴慢波结构的TM01模式有类似于TEM模的性质,没有截止频率,但纵向电场不为零,电子束能够与它发生强相互作用过程。粒子模拟优化结果表明,在器件半径仅为4.0 cm,电子束能量240 keV,电子束流1.8 kA,导引磁场仅为0.75 T时,返波振荡器可以在频率1.60 GHz处获得较大功率的微波输出, 平均峰值功率达140 MW,平均峰值功率效率约为32%。 相似文献
16.
17.
充填不同气体相对论返波管特性的PIC-MCC模拟 总被引:2,自引:0,他引:2
讨论了PIC-MCC方法的基本原理以及在UNIPIC软件中的编程实现,并用该软件模拟了充填不同种类气体在不同气压下相对论返波管的气体电离过程,讨论了所产生的等离子体对电子束的传输以及波束相互作用的影响.给出了返波管输出功率、频率和起振时间随气体种类和气压等参数的变化情况.模拟结果表明,电离产生的阳离子是返波管性能改善的原因,而腔内滞留的低能电子是破坏返波管振荡而引起脉宽缩短的重要因素.关键词:蒙特卡罗碰撞粒子模拟高功率微波相对论返波管 相似文献
18.
紧凑型P波段相对论返波振荡器的粒子模拟 总被引:1,自引:1,他引:0
设计了一种紧凑型P波段相对论返波振荡器,其电动力学结构是由同轴慢波结构和同轴引出结构组成的。同轴慢波结构缩小了器件的径向尺寸;同轴引出结构缩短了器件的轴向长度,且提高了束波作用效率。通过粒子模拟研究了器件内束波作用的物理过程,模拟结果表明:器件具有结构紧凑、束波作用效率高的特点。在二极管电压700 kV,电流7 kA,导引磁场1.5 T时,器件在频率833 MHz处获得较高的微波输出,饱和后输出微波的平均功率达1.58 GW,效率约为32%,器件电磁结构尺寸仅为108 mm×856 mm。 相似文献
19.
提出了X波段双频两段式同轴相对论返波振荡器的物理模型,推导了该结构在冷腔时的TM0n模式色散方程,数值求解了两段式同轴波纹慢波结构TM01模色散曲线;用粒子模拟软件对其结构和电磁参数进行分析研究,优化得到的结构参数为第一、二段分别为10个和4个周期数,周期长度分别为0.50 cm和 0.73 cm,波纹幅值分别为0.13 cm和0.21 cm,平均半径为2.9 cm,同轴间隙为2.1 cm。结果表明:在环形相对论电子注电压为510 kV、电流为9.4 kA,引导磁场为0.7 T的条件下,器件得到了X波段稳定的高功率双频微波输出,其平均功率约为0.75 GW,平均功率效率为15.6%。 相似文献