首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FTIR and Raman spectroscopies have been used to characterize the structure and conformational order of dimethylchlorooctadecylsilane (DOS) covalently bonded to ultrathin silica films supported on Ag substrates. Ultrathin silica films of ca. 30 A thickness prepared from sol-gel methods are immobilized on Ag surfaces modified with a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane (3MPT). This layered structure provides a unique opportunity for acquiring complementary spectral data from both FTIR and Raman spectroscopies, which are useful in elucidating alkylsilane conformation pertaining to stationary phases for reversed-phase liquid chromatography (RPLC). Characterization of octadecyltrichlorosilane (OTS) layers on thin silica films of ca. 800 A thickness on 3MPT-modified Ag surfaces has been reported previously. Differences between the ultrathin silica films used in this study and the thin silica films used in this previous study are considered. The results from both FTIR and Raman spectroscopy presented here suggest that bonded DOS alkyl chains are in a disordered, liquid-like state with close to monolayer surface coverage.  相似文献   

2.
FTIR and Raman spectroscopies have been used to characterize the structure and conformational order of dimethylchlorooctadecylsilane (DOS) covalently bonded to ultrathin silica films supported on Ag substrates. Ultrathin silica films of ca. 30 Å thickness prepared from sol-gel methods are immobilized on Ag surfaces modified with a self-assembled monolayer of (3-mercaptopropyl)trimethoxysilane (3MPT). This layered structure provides a unique opportunity for acquiring complementary spectral data from both FTIR and Raman spectroscopies, which are useful in elucidating alkylsilane conformation pertaining to stationary phases for reversed-phase liquid chromatography (RPLC). Characterization of octadecyltrichlorosilane (OTS) layers on thin silica films of ca. 800 Å thickness on 3MPT-modified Ag surfaces has been reported previously. Differences between the ultrathin silica films used in this study and the thin silica films used in this previous study are considered. The results from both FTIR and Raman spectroscopy presented here suggest that bonded DOS alkyl chains are in a disordered, liquid-like state with close to monolayer surface coverage.  相似文献   

3.
赵乔  逯丹凤  陈晨  祁志美 《物理化学学报》2014,30(12):2335-2341
采用溶胶-凝胶分子模板法在50 nm厚金膜表面制备约40 nm厚介孔二氧化硅(MPS)薄膜,然后在MPS薄膜表面静电自组装金纳米粒子(GNP)单层膜,形成的多层膜结构用作表面增强拉曼散射(SERS)基底.利用扫描电镜观测到MPS薄膜具有表面开口多孔结构,有助于小分子向薄膜内快速扩散.基于时域有限差分(FDTD)方法对电场分布的仿真结果指出,在表面等离子体共振(SPR)条件下分布于金膜与GNP之间的消逝场显著增强.由于空间重叠,该增强场能够高效激发MPS内富集的小分子拉曼信号,产生的拉曼信号还可免受金属作用的干扰.利用Kretschmann结构和尼罗蓝(NB)拉曼活性分子测试了Au/MPS/GNP基底在785 nm激发波长下的SERS效果,并与Au/GNP基底进行了比较.结果表明,在SPR条件下,Au/MPS/GNP基底能够导致较强的定向和背向拉曼信号,而且在586 cm-1处的背向拉曼信号强度是Au/GNP基底的40倍,这归功于MPS薄膜.进一步测试表明背向拉曼信号强度与NB浓度成正相关.这意味着Au/MPS/GNP基底具有良好的半定量检测本领.  相似文献   

4.
赵乔  逯丹凤  陈晨  祁志美 《物理化学学报》2015,30(12):2335-2341
采用溶胶-凝胶分子模板法在50 nm 厚金膜表面制备约40 nm 厚介孔二氧化硅(MPS)薄膜, 然后在MPS薄膜表面静电自组装金纳米粒子(GNP)单层膜, 形成的多层膜结构用作表面增强拉曼散射(SERS)基底.利用扫描电镜观测到MPS薄膜具有表面开口多孔结构, 有助于小分子向薄膜内快速扩散. 基于时域有限差分(FDTD)方法对电场分布的仿真结果指出, 在表面等离子体共振(SPR)条件下分布于金膜与GNP之间的消逝场显著增强. 由于空间重叠, 该增强场能够高效激发MPS内富集的小分子拉曼信号, 产生的拉曼信号还可免受金属作用的干扰. 利用Kretschmann 结构和尼罗蓝(NB)拉曼活性分子测试了Au/MPS/GNP基底在785 nm激发波长下的SERS效果, 并与Au/GNP基底进行了比较. 结果表明, 在SPR条件下, Au/MPS/GNP基底能够导致较强的定向和背向拉曼信号, 而且在586 cm-1处的背向拉曼信号强度是Au/GNP基底的40 倍, 这归功于MPS薄膜. 进一步测试表明背向拉曼信号强度与NB浓度成正相关. 这意味着Au/MPS/GNP基底具有良好的半定量检测本领.  相似文献   

5.
The fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e., a layer of ODMS with a grafting density less than the maximum possible monolayer surface coverage. We demonstrate herein the fabrication of nanoporous PS templates from annealed PS-b-PMMA diblock copolymer thin films on these partial ODMS SAMs.  相似文献   

6.
采用垂直沉积技术及相应的改进方法,使用化学合成的400 nm单分散二氧化硅微球自组装制备了胶体晶体薄膜。通过扫描电镜与分光光度计对样品的微观结构与透过光谱进行了表征,并对比研究了不同的垂直沉积方法对胶体晶体的影响。结果表明,通过温度与流量控制两种改进手段,均能制备具有六方密堆结构周期排列的胶体晶体薄膜。在垂直沉积过程中适当的升高温度有利于降低胶体粒子的用量,而通过流量控制的垂直沉积技术则可以有效缩短自组装时间。通过调节蠕动泵改变液面与基板的相对运动速度,或者调控温度改变胶体溶液的蒸发速率,可在材料表面形成单层或多层的胶体晶体薄膜。改进的垂直沉积技术将有望应用于快速沉积大面积、高质量的胶体晶体材料。  相似文献   

7.
Resonant Raman and surface-enhanced Raman scattering (SERS) spectroscopies, complemented with scanning tunnel microscopy and electrochemical techniques, have been used to obtain information about the amount and spatial distribution of methylene blue (MB) molecules immobilized on sulfur and four ultrathin molecular alkanethiolate films self-assembled on Au(111) and rough Au electrodes. The intensity of the Raman signals allow one to estimate the amount of immobilized MB at different organic films, whereas the decrease in the SERS intensity as a function of distance for the rough Au electrodes is used to locate the average position of the MB species with respect to the Au substrate. We found that significant amounts of cationic MB species are able to diffuse into methyl-terminated thiols, but they are stopped at the outer plane of the self-assembled monolayer (SAM) by negatively charged carboxylate groups. The relative shift of C-N stretching Raman modes indicates that the binding of MB to S is different from that found for MB on thiols. Most of the molecules immobilized on methyl- and carboxylate-terminated thiols are electrochemically inactive, suggesting that strong coupling between the Au electrode and the MB molecules is needed for charge transfer. Our results are consistent with a small population of electrochemically active MB species very close to the Au surface that reach this position driven by their lipophilic (hydrophobic) character through defects at SAMs.  相似文献   

8.
Conjugated polymers can be the alternatives to metals to manufacture the integrated circuit in nano/micro electromechanical systems (NEMS/ MEMS)[1], while patterning is the basis for such an application. It has been well known that the electro-deposition on a template[2—10] represents the simplest method to construct a patterned conducting polymer structure as compared with the conventional ap-proaches such as photolithography, e-beam writing, screen-printing, and ink-jet printing[11]. For…  相似文献   

9.
Thin nanoporous gold (np-Au) films, ranging in thickness from approximately 40 to 1600 nm, have been prepared by selective chemical etching of Ag from Ag/Au alloy films supported on planar substrates. A combination of scanning electron microscopy (SEM) imaging, synchrotron grazing incidence small angle X-ray scattering, and N2 adsorption surface area measurements shows the films to exhibit a porous structure with intertwined gold fibrils exhibiting a spectrum of feature sizes and spacings ranging from several to hundreds of nanometers. Spectroscopic ellipsometry measurements (300-800 nm) reveal the onset of surface plasmon types of features with increase of film thicknesses into the approximately 200 nm film thickness range. Raman scattering measurements for films functionalized with a self-assembled monolayer formed from 4-fluorobenzenethiol show significant enhancements which vary sharply with film thickness and etching times. The maximum enhancement factors reach approximately 10(4) for 632.8 nm excitation, peak sharply in the approximately 200 nm thickness range for films prepared at optimum etching times, and show high spot to spot reproducibility with approximately 1 microm laser spot sizes, an indication that these films could be useful as durable, highly reproducible surface-enhanced Raman substrates.  相似文献   

10.
Dodecanethiol-stabilized gold nanoparticles (AuNPs) were deposited via a gas-expanded liquid (GXL) technique utilizing CO(2)-expanded hexane onto substrates of different surface energy. The different surface energies were achieved by coating silicon (100) substrates with various organic self-assembled monolayers (SAMs). Following the deposition of AuNP films, the films were characterized to determine the effect of substrate surface energy on nanoparticle film deposition and growth. Interestingly, the critical surface tension of a given substrate does not directly describe nanoparticle film morphology. However, the results in this study indicate a shift between layer-by-layer and island film growth based on the critical surface tension of the capping ligand. Additionally, the fraction of surface area covered by the AuNP film decreases as the oleophobic nature of the surfaces increases. On the basis of this information, the potential exists to engineer nanoparticle films with desired morphologies and characteristics.  相似文献   

11.
The monomolecular organisation of symmetric, chemically modified tetraether lipids caldarchaeol-PO(4) was studied using Langmuir film balance, ellipsometry, and atomic force microscopy (AFM). Solid silicon wafer substrates were modified to hydrophobic, hydrophilic, and amino-silanised surfaces; and Langmuir-Blodgett (LB)-films were transferred onto each. LB-caldarchaeol-PO(4) films were subjected to further rinsing with organic solvent and additional physical treatments, to compare their resistance and stability on chemisorbed (amino-silanised) and physisorbed (hydrophobic and hydrophilic) surfaces. The resistance and stability of these monolayer films was characterized by ellipsometry and AFM, and film thickness was determined using ellipsometry. AFM was also employed to observe surface morphology. Monolayer films on hydrophobic surfaces were found to be more resistant to rinsing with organic solvent and additional physical treatments than monolayer films on either amino-silanised or hydrophilic surfaces. The hydrophobic effect with hydrophobic surfaces appears to support the formation of stronger caldarchaeol-PO(4) films on silicon wafer substrates, with increased resistance and stability.  相似文献   

12.
Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation   总被引:2,自引:0,他引:2  
Residual stress was evaluated by measuring the substrate curvature for alkoxide-derived silica and titania films deposited on silica glass substrates. The residual stress was tensile, increasing with increasing heat-treatment temperature. The stress in fired films was affected greatly by water/alkoxide ratio and chelating agents in starting solutions. Secondly, in situ observation was made on cracking of gel films subjected to heat-treatment. Silica and titania gel films deposited on silicon wafers were cracked in the heating-up stage at temperatures of 100°–400°C, depending on the film thickness and heating rate. Larger thickness and lower heating rates were found to lower the cracking onset temperature. Finally, organic polymers with amide groups were demonstrated to increase the uncracking critical thickness. The polymers include polyvinylpyrrolidone and polyvinylacetamide, allowing single layer ceramic coating films over 1 m in thickness to be formed without cracking.  相似文献   

13.
14.
A novel method for covalent attachment of ultrathin silica films (thickness <10 nm) to gold substrates is reported. Silica layers were prepared using spin-coating of sol-gel precursor solutions onto gold substrates that were cleaned and oxidized using UV photo-oxidation in an ozone atmosphere. The gold oxide layer resulting from this process acts as a wetting control and adhesive agent for the ultrathin silica layer. Control of silica layer thickness between approximately 6 and 60 nm through modification of precursor solution composition or by repetitive deposition is demonstrated. Films were characterized using infrared spectroscopy, ellipsometry, atomic force microscopy, and cyclic voltammetry. For the standard deposition parameters developed here, films were determined to be 5.5 +/- 0.75 nm thick, and were stable in aqueous solutions ranging in pH from 2 to 10 for at least 30 min. Films contained nanoscopic defects with radii of 相似文献   

15.
With the aim of investigating the effect of the surface properties on the friction behavior of self-assembled monolayers, we have modified tipless atomic force microscopy (AFM) cantilevers with a poly(dimethylsiloxane) (PDMS) lens. The friction coefficient using the silicon tip is strongly influenced by the mechanical properties of the substrate monolayer because hard, sharp silicon tips penetrate the surface of organic monolayers. However, the friction coefficient obtained for the PDMS-modified AFM cantilever is mostly due to the surface properties of the monolayer functional end group, rather than the viscoelastic deformation of the monolayer. The use of the PDMS tip was demonstrated as a novel means to investigate the effect of surface properties on the frictional behavior of self-assembled monolayers with various functional groups with less mechanical deformation.  相似文献   

16.
The design and initial characterization of the self-assembled gold colloid monolayer by a sandwich structure via the immunological identification are reported. The 13 nm gold colloid nanoparticles and the silicon or quartz substrates have been modified with the mouse polyclonal antibody against hepatitis B virus surface antigen (PAb) and the mouse monoclonal antibody against hepatitis B virus surface antigen (MAb), respectively. They can be linked by a special reaction with their corresponding hepatitis B virus surface antigen (Antigen) as a sandwich structure. Thus, the density of gold nanoparticles self-assembled on the substrate can be readily controlled by the amount of the antigen added. The resulting substrates have been characterized by atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy when the gold nanoparticles were modified with SERS-active probe molecules of 4-mercaptobenzoic acid (MBA) after silver enhancement. These data show that the gold nanoparticles are separately fixed onto the substrate and form a uniform monolayer, which possess a set of features that make them very attractive for both basic and applied uses, including roughness, high stability, and biocompatibility.  相似文献   

17.
Matrix-free laser desorption/ionization was studied on two-layered sample plates consisting of a substrate and a thin film coating. The effect of the substrate material was studied by depositing thin films of amorphous silicon on top of silicon, silica, polymeric photoresist SU-8, and an inorganic-organic hybrid. Des-arg9-bradykinin signal intensity was used to evaluate the sample plates. Silica and hybrid substrates were found to give superior signals compared with silicon and SU-8 because of thermal insulation and compatibility with amorphous silicon deposition process. The effect of surface topography was studied by growing amorphous silicon on hybrid micro- and nanostructures, as well as planar hybrid. Compared with planar sample plates, micro- and nanostructures gave weaker and stronger signals, respectively. Different coating materials were tested by growing different thin film coatings on the same substrate. Good signals were obtained from titania and amorphous silicon coated sample plates, but not from alumina coated, silicon nitride coated, or uncoated sample plates. Overall, the strongest signals were obtained from oxygen plasma treated and amorphous silicon coated inorganic-organic hybrid, which was tested for peptide-, protein-, and drug molecule analysis. Peptides and drugs were analyzed with little interference at low masses, subfemtomole detection levels were achieved for des-arg9-bradykinin, and the sample plates were also suitable for ionization of small proteins.  相似文献   

18.
Vibrational sum frequency generation (VSFG) spectroscopy was used in conjunction with steady-state IR spectroscopy, atomic force microscopy (AFM), and spectroscopic ellipsometry to characterize organic semiconductor thin films that were vapor deposited on silica- and trimethoxy(octadecyl)silane (ODTMS)-functionalized silica surfaces. The growth of perylene derivative N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C(8)) was found to proceed differently on simple glass slides relative to that of native oxide on silicon and fused quartz slides. VSFG was applied to these samples to isolate structural changes that occurred specifically at the buried interface between the organic semiconductor and the silica dielectric upon thermal annealing. A model was introduced to globally fit the imide carbonyl symmetric and asymmetric interfacial spectra that included contributions from both inner and outer interfaces. The fits to the VSFG data and AFM topographic images revealed significant reordering at the outer interface on all substrates upon thermal annealing. Within the model, the spectroscopic data reported that the inner interfacial PTCDI-C(8) monolayer reoriented to a more reclined phase on bare substrates after annealing but remained essentially unchanged on ODTMS monolayers. Electrical characterization of PTCDI-C(8) field-effect transistors indicated that electron mobilities were higher on bare substrate devices but could be improved by a factor of 2 on both surface types by thermal annealing. The mobility effects were attributed to the annealing-driven coalescence of PTCDI-C(8) grain boundaries. Consistent with previous structural reports, the molecular rearrangements of the first monolayer of PTCDI-C(8) on bare substrates that were reported by VSFG spectroscopy had a noticeable impact on the device performance.  相似文献   

19.
We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2.  相似文献   

20.
The self-assembled ferredoxin monolayer onto the (100) surface of the silicon substrate was prepared and the nonspecifically adsorbed aggregates of ferredoxin on the substrate were successfully eliminated by using a zwitterionic surfactant, 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). The AFM image of the self-assembled ferredoxin monolayer on the silicon substrate treated with CHAPS clearly shows that the size of ferredoxin clusters is about 20–30 nm, which is on the order of an aggregate of about five ferredoxin molecules, whereas the size of ferredoxin aggregates on the substrate without CHAPS treatment was measured to be about 100–200 nm. Those results offer a useful method for the elimination of the nonspecific adsorption of proteins onto inorganic substrates, which has been a long-term problem in the fabrication of biomolecular electronic devices by the self-assembly technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号