首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an infinite-buffer single server queue where arrivals occur according to a batch Markovian arrival process (BMAP). The server serves until system emptied and after that server takes a vacation. The server will take a maximum number H of vacations until either he finds at least one customer in the queue or the server has exhaustively taken all the vacations. We obtain queue length distributions at various epochs such as, service completion/vacation termination, pre-arrival, arbitrary, departure, etc. Some important performance measures, like mean queue lengths and mean waiting times, etc. have been obtained. Several other vacation queueing models like, single and multiple vacation model, queues with exceptional first vacation time, etc. can be considered as special cases of our model.  相似文献   

2.
In this paper a higher order approximation for single server queues and tandem queueing networks is proposed and studied. Different from the most popular two-moment based approximations in the literature, the higher order approximation uses the higher moments of the interarrival and service distributions in evaluating the performance measures for queueing networks. It is built upon the MacLaurin series analysis, a method that is recently developed to analyze single-node queues, along with the idea of decomposition using higher orders of the moments matched to a distribution. The approximation is computationally flexible in that it can use as many moments of the interarrival and service distributions as desired and produce the corresponding moments for the waiting and interdeparture times. Therefore it can also be used to study several interesting issues that arise in the study of queueing network approximations, such as the effects of higher moments and correlations. Numerical results for single server queues and tandem queueing networks show that this approximation is better than the two-moment based approximations in most cases.  相似文献   

3.
In this paper, we consider GI/M/c queues with two classes of vacation mechanisms: Station vacation and server vacation. In the first one, all the servers take vacation simultaneously whenever the system becomes empty, and they also return to the system at the same time, i.e., station vacation is a group vacation for all servers. This phenomenon occurs in practice, for example, when the system consists of a set of machines monitored by a single operator, or the system consists of inseparable interconnected parallel machines. In such situations the whole station has to be treated as a single entity for vacation when the system is utilized for a secondary task. For the second class of vacation mechanisms, each server takes its own vacation whenever it complexes a service and finds no customers waiting in the queue, which occurs, for instance in the post office, when each server is a relatively independent working unit, and can itself be used for other purposes. For both models, we derive steady state probabilities that have matrix geometric form, and develop computational algorithms to obtain numerical solutions. We also analyze and make comparisons of these models based on numerical observations.  相似文献   

4.
We consider an M/M/R queue with vacations, in which the server works with different service rates rather than completely terminates service during his vacation period. Service times during vacation period, service times during service period and vacation times are all exponentially distributed. Neuts’ matrix–geometric approach is utilized to develop the computable explicit formula for the probability distributions of queue length and other system characteristics. A cost model is derived to determine the optimal values of the number of servers and the working vacation rate simultaneously, in order to minimize the total expected cost per unit time. Under the optimal operating conditions, numerical results are provided in which several system characteristics are calculated based on assumed numerical values given to the system parameters.  相似文献   

5.
We introduce the first class of perfect sampling algorithms for the steady-state distribution of multi-server queues with general interarrival time and service time distributions. Our algorithm is built on the classical dominated coupling from the past protocol. In particular, we use a coupled multi-server vacation system as the upper bound process and develop an algorithm to simulate the vacation system backward in time from stationarity at time zero. The algorithm has finite expected termination time with mild moment assumptions on the interarrival time and service time distributions.  相似文献   

6.
We consider a discrete-time single-server queueing model where arrivals are governed by a discrete Markovian arrival process (DMAP), which captures both burstiness and correlation in the interarrival times, and the service times and the vacation duration times are assumed to have a general phase-type distributions. The vacation policy is that of a working vacation policy where the server serves the customers at a lower rate during the vacation period as compared to the rate during the normal busy period. Various performance measures of this queueing system like the stationary queue length distribution, waiting time distribution and the distribution of regular busy period are derived. Through numerical experiments, certain insights are presented based on a comparison of the considered model with an equivalent model with independent arrivals, and the effect of the parameters on the performance measures of this model are analyzed.  相似文献   

7.
This paper studies a new type of multi-class priority queues with semi-exhaustive service and server vacations, which operates as follows: A single server continues serving messages in queuen until the number of messages decreases toone less than that found upon the server's last arrival at queuen, where 1nN. In succession, messages of the highest class present in the system, if any, will be served according to this semi-exhaustive service. Applying the delay cycle analysis and introducing a super-message composed of messages served in a busy period, we derive explicitly the Laplace-Stieltjes transforms (LSTs) and the first two moments of the message waiting time distributions for each class in the M/G/1-type priority queues with multiple and single vacations. We also derive a conversion relationship between the LSTs for waiting times in the multiple and single vacation models.  相似文献   

8.
The queue network studied consists of n infinite queues in parallel served by independent servers and by other servers all linked to form a hierarchical structure. The total service a unit receives depends partially on other units in service. We call this type of servicing partially shared servicing. All interarrival times as well as service times are assumed exponentially distributed. The characteristic of interest is the traffic intensity of the infinite queues. Some simple formulae are obtained. An application to modelling a disc I/O system is described. The model turns out to be useful and accurate with wide applicability.  相似文献   

9.
In this paper, we study an M/G/1 multi-queueing system consisting ofM finite capacity queues, at which customers arrive according to independent Poisson processes. The customers require service times according to a queue-dependent general distribution. Each queue has a different priority. The queues are attended by a single server according to their priority and are served in a non-preemptive way. If there are no customers present, the server takes repeated vacations. The length of each vacation is a random variable with a general distribution function. We derive steady state formulas for the queue length distribution and the Laplace transform of the queueing time distribution for each queue.  相似文献   

10.
Large sample inference from single server queues   总被引:1,自引:0,他引:1  
Problems of large sample estimation and tests for the parameters in a single server queue are discussed. The service time and the interarrivai time densities are assumed to belong to (positive) exponential families. The queueing system is observed over a continuous time interval (0,T] whereT is determined by a suitable stopping rule. The limit distributions of the estimates are obtained in a unified setting, and without imposing the ergodicity condition on the queue length process. Generalized linear models, in particular, log-linear models are considered when several independent queues are observed. The mean service times and the mean interarrival times after appropriate transformations are assumed to satisfy a linear model involving unknown parameters of interest, and known covariates. These models enhance the scope and the usefulness of the standard queueing systems.Partially supported by the U. S. Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

11.
This paper considers a cyclic-service system with a class of limited service policies that consists of exhaustive limited, gated limited and general decrementing policies. Under these policies, the number of customers served consecutively during a server visit is limited by a vector of integers. The major results in this paper are derivations of expected amount of work left in the queues at the server departures for these three policies. Exact expressions of weighted sum of mean waiting times, known as pseudo-conservation laws, are subsequently obtained. The conservation laws for this class of policies contain unknown boundary probabilities. We estimate these probabilities using corresponding server vacation models. Numerical results presented for the exhaustive limited policy are noted to be very accurate compared with simulation results. Moreover, we have obtained analytical bounds for the weighted sums. Finally, we present a conservation law with mixed service policies, and mean waiting times for symmetric systems.This work was completed while the author was in the Ph.D. program at Rensselaer Polytechnic Institute.This work was partially supported by the Center for Advanced Technologies of the New York State.  相似文献   

12.
The paper investigates the queueing process in stochastic systems with bulk input, batch state dependent service, server vacations, and three post-vacation disciplines. The policy of leaving and entering busy periods is hysteretic, meaning that, initially, the server leaves the system on multiple vacation trips whenever the queue falls below r (⩾1), and resumes service when during his absence the system replenishes to N or more customers upon one of his returns. During his vacation trips, the server can be called off on emergency, limiting his trips by a specified random variable (thereby encompassing several classes of vacation queues, such as ones with multiple and single vacations). If by then the queue has not reached another fixed threshold M (⩽ N), the server enters a so-called “post-vacation period” characterized by three different disciplines: waiting, or leaving on multiple vacation trips with or without emergency. For all three disciplines, the probability generating functions of the discrete and continuous time parameter queueing processes in the steady state are obtained in a closed analytic form. The author uses a semi-regenerative approach and enhances fluctuation techniques (from his previous studies) preceding the analysis of queueing systems. Various examples demonstrate and discuss the results obtained. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Rabehasaina  Landy  Woo  Jae-Kyung 《Queueing Systems》2020,94(3-4):393-420

We consider a general k-dimensional discounted infinite server queueing process (alternatively, an incurred but not reported claim process) where the multivariate inputs (claims) are given by a k-dimensional finite-state Markov chain and the arrivals follow a renewal process. After deriving a multidimensional integral equation for the moment-generating function jointly to the state of the input at time t given the initial state of the input at time 0, asymptotic results for the first and second (matrix) moments of the process are provided. In particular, when the interarrival or service times are exponentially distributed, transient expressions for the first two moments are obtained. Also, the moment-generating function for the process with deterministic interarrival times is considered to provide more explicit expressions. Finally, we demonstrate the potential of the present model by showing how it allows us to study semi-Markovian modulated infinite server queues where the customers (claims) arrival and service (reporting delay) times depend on the state of the process immediately before and at the switching times.

  相似文献   

14.
We consider a closed queueing network, consisting of two FCFS single server queues in series: a queue with general service times and a queue with exponential service times. A fixed number \(N\) of customers cycle through this network. We determine the joint sojourn time distribution of a tagged customer in, first, the general queue and, then, the exponential queue. Subsequently, we indicate how the approach toward this closed system also allows us to study the joint sojourn time distribution of a tagged customer in the equivalent open two-queue system, consisting of FCFS single server queues with general and exponential service times, respectively, in the case that the input process to the first queue is a Poisson process.  相似文献   

15.
This paper deals with approximate analysis methods for open queueing networks. External and internal flows from and to the nodes are characterized by renewal processes with discrete time distributions of their interarrival times. Stationary distributions of the waiting time, the queue size and the interdeparture times are obtained using efficient discrete time algorithms for single server (GI/G/1) and multi-server (GI/D/c) nodes with deterministic service. The network analysis is extended to semi-Markovian representations of each flow among the nodes, which include parameters of the autocorrelation function.  相似文献   

16.
《随机分析与应用》2013,31(4):917-933
Abstract

Shanthikumar (Shanthikumar, J.G. Level crossing analysis of priority queues and a conservation identity for vacation models. Nav. Res. Log. 1989, 36, 797–806) studied the priority M/G/1 queue with server vacations and found that the difference between the waiting time distribution under the non‐preemptive priority (NPP) and that under the preemptive‐resume priority (PRP) is independent of the vacation policy. We extend this interesting property: (i) to the generalized vacations which includes the two vacation policies considered by Shanthikumar; (ii) to the structured batch Poisson arrival process; and (iii) to the discrete‐time queues.  相似文献   

17.
18.
本文研究了具有位相型休假、位相型启动和单重几何休假的离散时间排队,假定 顾客到达间隔服从一般分布,服务时间服从几何分布,运用矩阵解析方法我们得到了这 些排队系统中顾客在到达时刻稳态队长分布及其随机分解.  相似文献   

19.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under vacation policies with startup/closedown times, where the vacation time, the startup time, and the closedown time are generally distributed. When all the customers are served in the system exhaustively, the server shuts down (deactivates) by a closedown time. After shutdown, the server operates one of (1) multiple vacation policy and (2) single vacation policy. When the server reactivates since shutdown, he needs a startup time before providing the service. If a customer arrives during a closedown time, the service is immediately started without a startup time. The server may break down according to a Poisson process while working and his repair time has a general distribution. We analyze the system characteristics for the vacation models.  相似文献   

20.
Analysis of Markov Multiserver Retrial Queues with Negative Arrivals   总被引:4,自引:0,他引:4  
Negative arrivals are used as a control mechanism in many telecommunication and computer networks. In the paper we analyze multiserver retrial queues; i.e., any customer finding all servers busy upon arrival must leave the service area and re-apply for service after some random time. The control mechanism is such that, whenever the service facility is full occupied, an exponential timer is activated. If the timer expires and the service facility remains full, then a random batch of customers, which are stored at the retrial pool, are automatically removed. This model extends the existing literature, which only deals with a single server case and individual removals. Two different approaches are considered. For the stable case, the matrix–analytic formalism is used to study the joint distribution of the service facility and the retrial pool. The approximation by more simple infinite retrial model is also proved. In the overloading case we study the transient behaviour of the trajectory of the suitably normalized retrial queue and the long-run behaviour of the number of busy servers. The method of investigation in this case is based on the averaging principle for switching processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号