首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ~10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ? v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra.  相似文献   

2.
3He, 129Xe and 131Xe NMR measurements of resonance frequencies in the magnetic field B0 = 11.7586 T in different gas phase mixtures have been reported. Precise radiofrequency values were extrapolated to the zero gas pressure limit. These results combined with new quantum chemical values of helium and xenon nuclear magnetic shielding constants were used to determine new accurate nuclear magnetic moments of 129Xe and 131Xe in terms of that of the 3He nucleus. They are as follows: μ(129Xe) = ?0.7779607(158)μN and μ(131Xe) = +0.6918451(70)μN. By this means, the new ‘helium method’ for estimations of nuclear dipole moments was successfully tested. Gas phase NMR spectra demonstrate the weak intermolecular interactions observed on the 3He and 129Xe and 131Xe shielding in the gaseous mixtures with Xe, CO2 and SF6. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
New examples of [C6F5Xe]+ salts of the weakly coordinating [BY4]- (Y = CN, CF3, or C6F5) anions were synthesized by metathesis of [C6F5Xe][BF4] with MI[BY4] (MI = K or Cs; Y = CN, CF3, or C6F5) in CH3CN at -40 degrees C, and were crystallized from CH2Cl2 or from a CH2Cl2/CH3CN solvent mixture. The low-temperature (-173 degrees C) X-ray crystal structures of the [C6F5Xe]+ cation and of the [C6F5XeNCCH3]+ adduct-cation are reported for [C6F5Xe][B(CF3)4], [C6F5XeNCCH3][B(CF3)4], [C6F5Xe][B(CN)4], and [C6F5XeNCCH3][B(C6F5)4]. The [C6F5Xe]+ cation, in each structure, interacts with either the anion or the solvent, with the weakest cation-anion interactions occurring for the [B(CF3)4]- anion. The solid-state Raman spectra of the [C6F5Xe]+ and [C6F5XeNCCH3]+ salts have been assigned with the aid of electronic structure calculations. Gas-phase thermodynamic calculations show that the donor-acceptor bond dissociation energy of [C6F5XeNCCH3]+ is approximately half that of [FXeNCCH3]+. Coordination of CH3CN to [C6F5Xe]+ is correlated with changes in the partial charges on mainly Xe, the ipso-C, and N, that is, the partial charge on Xe increases and those on the ipso-C and N decrease upon coordination, typifying a transition from a 2c-2e to a 3c-4e bond.  相似文献   

4.
The salt [F5SN(H)Xe][AsF6] has been synthesized by the reaction of [F5SNH3][AsF6] with XeF2 in anhydrous HF (aHF) and BrF5 solvents and by solvolysis of [F3S triple bond NXeF][AsF6] in aHF. Both F5SN(H)Xe(+) and F5SNH3(+) have been characterized by (129)Xe, (19)F, and (1)H NMR spectroscopy in aHF (-20 degrees C) and BrF5 (supercooled to -70 degrees C). The yellow [F5SN(H)Xe][AsF6] salt was crystallized from aHF at -20 degrees C and characterized by Raman spectroscopy at -45 degrees C and by single-crystal X-ray diffraction at -173 degrees C. The Xe-N bond length (2.069(4) A) of the F5SN(H)Xe(+) cation is among the shortest Xe-N bonds presently known. The cation interacts with the AsF6(-) anion by means of a Xe---F-As bridge in which the Xe---F distance (2.634(3) A) is significantly less than the sum of the Xe and F van der Waals radii (3.63 A) and the AsF6(-) anion is significantly distorted from Oh symmetry. The (19)F and (129)Xe NMR spectra established that the [F5SN(H)Xe][AsF6] ion pair is dissociated in aHF and BrF5 solvents. The F5SN(H)Xe(+) cation decomposes by HF solvolysis to F5SNH3(+) and XeF2, followed by solvolysis of F5SNH3(+) to SF6 and NH4(+). A minor decomposition channel leads to small quantities of F5SNF2. The colorless salt, [F5SNH3][AsF6], was synthesized by the HF solvolysis of F3S triple bond NAsF5 and was crystallized from aHF at -35 degrees C. The salt was characterized by Raman spectroscopy at -160 degrees C, and its unit cell parameters were determined by low-temperature X-ray diffraction. Electronic structure calculations using MP2 and DFT methods were used to calculate the gas-phase geometries, charges, bond orders, and valencies as well as the vibrational frequencies of F 5SNH3(+) and F5SN(H)Xe(+) and to aid in the assignment of their experimental vibrational frequencies. In addition to F5TeN(H)Xe(+), the F5SN(H)Xe(+) cation provides the only other example of xenon bonded to an sp (3)-hybridized nitrogen center that has been synthesized and structurally characterized. These cations represent the strongest Xe-N bonds that are presently known.  相似文献   

5.
The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.  相似文献   

6.
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.  相似文献   

7.
Results of the first solid-state 131Xe NMR study of xenon-containing compounds are presented. The two NMR-active isotopes of xenon, 129Xe (I=1/2) and 131Xe (I=3/2), are exploited to characterize the xenon magnetic shielding and quadrupolar interactions for two sodium perxenate salts, Na4XeO6.xH2O (x=0, 2), at an applied magnetic field strength of 11.75 T. Solid-state 129/131Xe NMR line shapes indicate that the local xenon environment in anhydrous Na4XeO6 adopts octahedral symmetry, but upon hydration, the XeO6(4-) anion becomes noticeably distorted from octahedral symmetry. For stationary, anhydrous samples of Na4XeO6, the heteronuclear 129/131Xe-23Na dipolar interaction is the principal contributor to the breadth of the 129/131Xe NMR lines. For stationary and slow magic-angle-spinning samples of Na4XeO(6).2H2O, the anisotropic xenon shielding interaction dominates the 129Xe NMR line shape, whereas the 131Xe NMR line shape is completely dominated by the nuclear quadrupolar interaction. The xenon shielding tensor is approximately axially symmetric, with a skew of -0.7+/-0.3, an isotropic xenon chemical shift of -725.6+/-1.0 ppm, and a span of 95+/-5 ppm. The 131Xe quadrupolar coupling constant, 10.8+/-0.5 MHz, is large for a nucleus at a site of approximate Oh symmetry, and the quadrupolar asymmetry parameter indicates a lack of axial symmetry. This study demonstrates the extreme sensitivity of the 131Xe nuclear quadrupolar interaction to changes in the local xenon environment.  相似文献   

8.
Cryptophane cages serve as host molecules to a Xe atom. Functionalization of cryptophane-A has permitted the development of Xe as a biosensor. Synthetic routes used to prepare cryptophanes result in racemic mixtures of the chiral cages. In the preparation of a tethered cryptophane-A cage for biosensor applications, some achiral and chiral substituents such as left-handed amino acids have been used. When the substituent is achiral, the NMR signal of the Xe atom in the functionalized cage in solution is a single isotropic peak, since the Xe shielding tensor components in the R and L cages differ by no more than the signs of the off-diagonal elements. Chiral substituents can split the cage-encapsulated Xe NMR signal into one or more sets of doublets, depending on the number of asymmetric centers in the substituent. We carry out quantum mechanical calculations of Xe nuclear magnetic shielding for the Xe atom at the same strategic position within an L cryptophane-A cage, under the influence of chiral potentials that represent r or l substituents outside the cage. Calculations of the Xe shielding response in the Lr and Ll diastereomeric pairs permit the prediction of the relative order of the Xe chemical shifts in solutions containing the Rl and Ll diastereomers. Where the substituent itself possesses two chiral centers, comparison of the calculated isotropic shielding responses in the Llr, Lrl, Rll, and Lrr systems, respectively, permits the prediction of the Xe spectrum of diastereomeric systems in solutions containing Llr, Rlr, Lll, and Rll systems. Assignment of the peaks observed in the experimental Xe NMR spectra is therefore possible, without having to undertake the difficult synthetic route that produces a single optically pure enantiomer.  相似文献   

9.
Among rare gases, xenon features an unusually broad nuclear magnetic resonance (NMR) chemical shift range in its compounds and as a non-bonded Xe atom introduced into different environments. In this work we show that (129)Xe NMR chemical shifts in the recently prepared, matrix-isolated xenon compounds appear in new, so far unexplored (129)Xe chemical shift ranges. State-of-the-art theoretical predictions of NMR chemical shifts in compounds of general formula HXeY (Y = H, F, Cl, Br, I, -CN, -NC, -CCH, -CCCCH, -CCCN, -CCXeH, -OXeH, -OH, -SH) as well as in the recently prepared ClXeCN and ClXeNC species are reported. The bonding situation of Xe in the studied compounds is rather different from the previously characterized cases as Xe appears in the electronic state corresponding to a situation with a low formal oxidation state, between I and II in these compounds. Accordingly, the predicted (129)Xe chemical shifts occur in new NMR ranges for this nucleus: ca. 500-1000 ppm (wrt Xe gas) for HXeY species and ca. 1100-1600 ppm for ClXeCN and ClXeNC. These new ranges fall between those corresponding to the weakly-bonded Xe(0) atom in guest-host systems (δ < 300 ppm) and in the hitherto characterized Xe molecules (δ > 2000 ppm). The importance of relativistic effects is discussed. Relativistic effects only slightly modulate the (129)Xe chemical shift that is obtained already at the nonrelativistic CCSD(T) level. In contrast, spin-orbit-induced shielding effects on the (1)H chemical shifts of the H1 atom directly bonded to the Xe center largely overwhelm the nonrelativistic deshielding effects. This leads to an overall negative (1)H chemical shift in the range between -5 and -25 ppm (wrt CH(4)). Thus, the relativistic effects induced by the heavy Xe atom appear considerably more important for the chemical shift of the neighbouring, light hydrogen atom than that of the Xe nucleus itself. The predicted NMR parameters facilitate an unambiguous experimental identification of these novel compounds.  相似文献   

10.
New examples of [C6F5Xe]+ salts of the weakly coordinating anions [B(CF3)4]-, [B(C6F5)4]-, [B(CN)4]-, and [B(OTeF5)4]- have been synthesized by metathesis reactions of [C6F5Xe][BF4] with the corresponding MI[BY4] salts (MI = K or Cs; Y = CF3, C6F5, CN, or OTeF5). The salts were characterized in solution by multi-NMR spectroscopy. Their stabilities in prototypic solvents (CH3CN and CH2Cl2) and decomposition products are reported. The influence of the coordinating nature of [BY4]- on the decomposition rate of [C6F5Xe]+ as well as the presence of the weakly nucleophilic [BF4]- ion has been studied. The electrophilic pentafluorophenylation of C6H5F by [C6F5Xe][BY4] in solvents of different coordinating abilities (CH3CN and CH2Cl2) and the effects of stronger nucleophiles (fluoride and water) on the pentafluorophenylation process have been investigated. Simulations of the 19F and 129Xe NMR spectra of [C6F5Xe]+ have provided the complete set of aryl 19F-19F and 129Xe-19F coupling constants and their relative signs. The 19F NMR parameters of the [C6F5Xe]+ cation in the present series of salts are shown to reflect the relative degrees of cation-solvent interactions.  相似文献   

11.
In this contribution, we demonstrate that a material (organic zeolite mimetic coordination polymer [CuL(2)], where L = L(-) = CF(3)COCHCOC(OCH(3))(CH(3))(2)) can be endowed with its functionality in situ under molecular-level control. This process involves the isomerization of the ligands followed by phase interconversion from a dense to an open, porous form. The porous (beta) form of the complex reveals zeolite-like behavior but, unlike zeolites and many other hard porous frameworks, porosity may be created or destroyed at will by the application of suitable external stimuli. Contact with methylene chloride vapor was used to switch on the sorbent functionality, whereas switching off was accomplished with a temperature pulse. The transformations between functionally inactive alpha and active beta forms, as well as the amount of vacant pore space, were monitored in situ by observing the NMR spectrum of hyperpolarized (HP) Xe atom probes. For methylene chloride, the chemical shift of the coabsorbed HP Xe correlated directly with the amount of adsorbate in the pore system of the open framework, illustrating the use of HP Xe for following sorption kinetics. The adsorption of propane, as an inert adsorbate, was also monitored directly with (1)H NMR, with HP Xe and by BET measurements, revealing more complex behavior.  相似文献   

12.
We report, for the first time, a theoretical prediction of the (129)Xe nuclear magnetic resonance chemical shift tensor of xenon atom in a single crystal of silicalite at near-zero occupancy and the temperature dependence of the Xe NMR chemical shift tensor for the polycrystalline silicalite at maximum occupancy. The former is a measure of the sensitivity of the Xe tensor components to the local structure of the channels without Xe-Xe contributions. The latter is a measure of the sensitivity of the Xe-Xe tensor components to the Xe-Xe distributions, as determined by the Xe-Xe potential function in competition with the Xe-silicalite potential function. Both theoretical predictions can be compared against Xe NMR experiments: the first against the Xe spectra collected as a function of rotation of the single crystal about the three crystalline axes in a magnetic field, and the second against variable temperature Xe NMR studies (below room temperature) of polycrystalline silicalite at maximum Xe occupancy. With the same parameter set (Xe-O potential and shielding functions), we predict the line shapes of Xe in SSZ-24 zeolite under various conditions of occupancy and temperature.  相似文献   

13.
We report, for the first time, a calculation of the isotropic NMR chemical shift of 129Xe in the cages of clathrate hydrates Structures I and II. We generate a shielding surface for Xe in the clathrate cages by quantum mechanical calculations. Subsequently this shielding surface is employed in canonical Monte Carlo simulations to find the average isotropic Xe shielding values in the various cages. For the two types of cages in clathrate hydrate Structure I, we find the intermolecular shielding values [sigma(Xe@5(12) cage)-sigma(Xe atom)]=-214.0 ppm, and [sigma(Xe@5(12)6(2) cage)-sigma(Xe atom)]=-146.9 ppm, in reasonable agreement with the values -242 and -152 ppm, respectively, observed experimentally by Ripmeester and co-workers between 263 and 293 K. For the 5(12) and 5(12)6(4) cages of Structure II we find [sigma(Xe@5(12) cage)-sigma(Xe atom)]=-206.7 ppm, and [sigma(Xe@5(12)6(4) cage)-sigma(Xe atom)]=-104.7 ppm, also in reasonable agreement with the values -225 and -80 ppm, respectively, measured in a Xe-propane type II mixed clathrate hydrate at 77 and 220-240 K by Ripmeester et al.  相似文献   

14.
The syntheses of XeOF2, F2OXeNCCH3, and XeOF2.nHF and their structural characterizations are described in this study. All three compounds are explosive at temperatures approaching 0 degrees C. Although XeOF2 had been previously reported, it had not been isolated as a pure compound. Xenon oxide difluoride has now been characterized in CH3CN solution by 19F, 17O, and 129Xe NMR spectroscopy. The solid-state Raman spectra of XeOF2, F2OXeNCCH3, and XeOF2.nHF have been assigned with the aid of 16O/18O and 1H/2H enrichment studies and electronic structure calculations. In the solid state, the structure of XeOF2 is a weakly associated, planar monomer, ruling out previous speculation that it may possess a polymeric chain structure. The geometry of XeOF2 is consistent with a trigonal bipyramidal, AX2YE2, VSEPR arrangement that gives rise to a T-shaped geometry in which the two free valence electron lone pairs and Xe-O bond domain occupy the trigonal plane and the Xe-F bond domains are trans to one another and perpendicular to the trigonal plane. Quantum mechanical calculations and the Raman spectra of XeOF2.nHF indicate that the structure likely contains a single HF molecule that is H-bonded to oxygen and also weakly F-coordinated to xenon. The low-temperature (-173 degrees C) X-ray crystal structure of F2OXeNCCH3 reveals a long Xe-N bond trans to the Xe-O bond and a geometrical arrangement about xenon in which the atoms directly bonded to xenon are coplanar and CH3CN acts as a fourth ligand in the equatorial plane. The two fluorine atoms are displaced away from the oxygen atom toward the Xe-N bond. The structure contains two sets of crystallographically distinct F2OXeNCCH3 molecules in which the bent Xe-N-C moiety lies either in or out of the XeOF2 plane. The geometry about xenon is consistent with an AX2YZE2 VSEPR arrangement of bond pairs and electron lone pairs and represents a rare example of a Xe(IV)-N bond.  相似文献   

15.
We report, for the first time, a prediction of the line shapes that would be observed in the (129)Xe nuclear magnetic resonance (NMR) spectrum of xenon in the cages of clathrate hydrates. We use the dimer tensor model to represent pairwise contributions to the intermolecular magnetic shielding tensor for Xe at a specific location in a clathrate cage. The individual tensor components from quantum mechanical calculations in clathrate hydrate structure I are represented by contributions from parallel and perpendicular tensor components of Xe-O and Xe-H dimers. Subsequently these dimer tensor components are used to reconstruct the full magnetic shielding tensor for Xe at an arbitrary location in a clathrate cage. The reconstructed tensors are employed in canonical Monte Carlo simulations to find the Xe shielding tensor component along a particular magnetic field direction. The shielding tensor component weighted according to the probability of finding a crystal fragment oriented along this direction in a polycrystalline sample leads to a predicted line shape. Using the same set of Xe-O and Xe-H shielding functions and the same Xe-O and Xe-H potential functions we calculate the Xe NMR spectra of Xe atom in 12 distinct cage types in clathrate hydrates structures I, II, H, and bromine hydrate. Agreement with experimental spectra in terms of the number of unique tensor components and their relative magnitudes is excellent. Agreement with absolute magnitudes of chemical shifts relative to free Xe atom is very good. We predict the Xe line shapes in two cages in which Xe has not yet been observed.  相似文献   

16.
采用CCSD(T)方法研究了范德华分子体系Xe—N2O复合物的势能面和振转光谱性质,研究表明,该势能面有两个极小点,分别对应T构型和线性Xe—ONN构型,采用离散变量表象和Lanczos算法计算了体系的振转能级,计算结果表明,CCSD(T)势能面支持97个振动束缚态,并对能级进行了指认,计算得到的Xe—N2O转动跃迁频率与实验值吻合得很好。  相似文献   

17.
The dependence of the 129Xe NMR chemical shift value of XeF2 on temperature and concentration was determined in a variety of prototypic media: in acidic (anhydrous HF, aHF), nonprotic but polar (dichloromethane), and basic (CD3CN-EtCN, 1:3 v/v) solvents. The 129Xe NMR spectra of a representative series of organoxenon(II) salts [RXe][Y] (R = C6F5, heptafluoro-1,4-cyclohexadien-1-yl (cyclo-1,4-C6F7), pentafluoro-1,4-cyclohexadien-3-on-1-yl (cyclo-3-O-1,4-C6F5), CF2=C(CF3), (CF3)2CFC[triple bond]C, C4H9C[triple bond]C; Y = BF4, AsF6) in aHF showed, compared with XeF2-aHF, a quantitatively less distinct but qualitatively related dependence of delta(129Xe) vs temperature. The dependence of their delta(129Xe) values on concentration in aHF is negligible. An explanation for the different behavior of [RXe][Y] and XeF2 is offered.  相似文献   

18.
The matrix isolation infrared spectroscopic and quantum chemical calculation results indicate that vanadium oxides, VO2 and VO4, coordinate noble gas atoms in forming noble gas complexes. The results showed that VO2 coordinates two Ar or Xe atoms and that VO4 coordinates one Ar or Xe atom in solid noble gas matrixes. Hence, the VO2 and VO4 molecules trapped in solid noble gas matrixes should be regarded as the VO2(Ng)2 and VO4(Ng) (Ng = Ar or Xe) complexes. The total V-Ng binding energies were predicted to be 12.8, 18.2, 5.0, and 7.3 kcal/mol, respectively, for the VO2(Ar)2, VO2(Xe)2, VO4(Ar), and VO4(Xe) complexes at the CCSD(T)//B3LYP level of theory.  相似文献   

19.
Spin-lattice relaxation times were measured for the deuterons in CD(4) in pure gas and in mixtures with the following buffer gases: Ar, Kr, Xe, HCl, N(2), CO, CO(2), CF(4), and SF(6). Effective collision cross sections sigma(theta, 2) for the molecular reorientation of CD(4) in collisions with these ten molecules are obtained as a function of temperature. These cross sections are compared with the corresponding cross sections sigma(J) obtained from (1)H spin-rotation relaxation in mixtures of CH(4) with the same set of buffer gases. Various classical reorientation models typically applied in liquids predict different ratios of the reduced correlation times for the reorientation of spherical tops. The Langevin model comes closest to predicting the magnitude of the sigma(theta, 2)/sigma(J) ratio that we obtain for CD(4).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号