首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of spectroscopic investigations of back discharge generated in point-plane electrode geometry in ambient air at atmospheric pressure are presented in the paper. The back discharge was generated for the plate electrode covered with fly ash layer. To characterize the discharge process, the emission spectra were measured for the back discharges and compared with those obtained for corona discharge generated in the same electrode configuration but with dielectric layer removed. The measurements have shown that spectral lines emitted by the back discharge depend on the forms of discharge and the discharge current. From comparison of spectral lines of back and normal discharges an effect of the dust layer on discharge morphology can be determined. In normal conditions, the emission spectra are dominated by atmospheric components (molecular nitrogen, atomic oxygen and nitrogen) but for back-discharges, additional lines due to elements and compounds in fly ash were also identified. The studies of back discharge were undertaken because this type of discharge decreases the collection efficiency in electrostatic precipitators.  相似文献   

2.
Results of spectroscopic investigations and current–voltage characteristics of electrical discharges between a needle and plate electrodes in a gas mixture simulating flue gases from coal fired power plants at atmospheric pressure are presented in the paper. In these investigations, back discharge was generated at the plate electrode covered with fly ash layer in order to simulate the conditions similar to those in electrostatic precipitators. To characterize the physical processes in back discharges, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash removed from the electrode. The emission spectra provide information on elemental and molecular composition of the layer. It was also shown that discharge characteristics in flue gas are quite different from those occurring in ambient air.  相似文献   

3.
The back-discharge is a type of discharge that takes place in the presence of corona discharge and occurs at an electrode covered with a dielectric layer of resistivity higher than about 108 Ω m. Back-discharge can be observed in electrostatic precipitators when dust covering the collection electrode has low conductivity. In this paper, the studies of back-discharge generated in ambient air, in point-to-plane geometry with the plate electrode covered with fly ash are presented. The discharge is characterised in terms of its visual forms, current–voltage characteristics, and light emission spectra. Three forms of back-discharge were investigated: glow discharge, streamers, and low-current back-arc discharge. The current of the back-arc discharge was only a few milliamps. The discharge was stabilised by a high series resistance. It was noted that the voltage of ignition of the back-discharge for negative polarity is lower than for a positive one. Spectroscopic measurements of emission spectra provided information on elements present in the discharge column. The elements present in the fly ash, including toxic metals, can be re-entrained into the gas as particles or can be emitted as ions or neutrals during the discharge, and can decrease the collection efficiency of electrostatic precipitators. These elements were detected in the emission spectra. The effect of the discharge on the fly ash layer was also discussed. It was observed that sinter-like leftovers remain in the dust layer after a back-arc discharge.  相似文献   

4.
The paper presents investigations of back discharge occurring in air and flue gases produced by the process of burning of liquefied petroleum gas or charcoal. The discharge was generated between a multineedle electrode and plate covered with fly ash layer. The aim of this work was to determine the effects of back discharge in multineedle-to-plate electrode configuration on the fly ash layer covering the plate electrode. Level of NOx and CO emission was also measured. It was found that the chemical composition of flue gas can be changed in the domains where the back discharge occurs, for example, additional amounts of nitrogen oxides (NO and NO2) are produced and also carbon oxide (CO) was produced at higher discharge current.  相似文献   

5.
利用光谱学方法,对针-水电极和针-板电极直流辉光放电特性进行了比较研究。结果发现两种装置产生的放电都有明显的分区现象, 从阴极到阳极分别为负辉区、阴极暗区、正柱区和阳极辉区。针-板电极放电中可以清晰地观测到阳极暗区, 而针-水电极放电阳极暗区不明显。对比两种放电的伏安特性曲线,发现放电电压均随电流增大而减小,但相同电流下针-水电极间的电压大于针-板电极间的电压。由于伏安特性具有负斜率,且放电电流密度介于10-5~10-4 A·cm-2,说明两种装置中的放电均处于正常辉光放电阶段。在正常辉光放电的范围内比较两种放电的发射光谱, 发现发射光谱中都包含N2的第二正带系(含波长为337.1 nm的谱线)和N+2的第一负带系(含波长为391.4 nm的谱线),但相对强度不同。利用光谱学方法对放电发射谱的谱线强度比I391.4I337.1和振动温度进行了空间分辨测量,发现相同位置处针-水电极放电的谱线强度比要比针-板电极放电的大,并且相同位置处针-水电极放电的振动温度高。  相似文献   

6.
大气压等离子体羽放电产生的低温等离子体由于不需要真空装置,可以对复杂材料进行三维处理等,在工业上具有广泛的应用前景。本工作利用等离子体针放电装置在大气压空气中产生了稳定的等离子体羽。通过光谱测量,发现等离子体羽发射谱中存在777.5和844.6nm的氧原子谱线。这表明在大气压空气放电中产生了具有高化学活性的氧原子。通过光谱学方法研究了氧原子谱线强度的空间分布,发现靠近电极处氧原子谱线强度远大于其他位置。为了对这一现象进行解释,利用光电倍增管对等离子体羽的发光信号进行了空间分辨测量,发现靠近电极处发光信号宽度远大于其他位置的发光信号宽度。这些结果对大气压空气等离子体羽在杀菌消毒等领域的应用具有重要意义。  相似文献   

7.
Electrical and optical characteristics of a positive corona discharge in He/Xe(Kr)/SF6/CCl4 mixtures, which are of interest for the use in multiwavelength excimer radiation sources, are studied in the needle-grid electrode configuration. The length of the discharge, which is usually used to pump repetitive high-pressure multiwavelength radiation sources, is equal to the length of the electrodes of an excimer laser or lamp pumped by a transverse electric discharge. The discharge current-voltage and frequency characteristics, panoramic emission spectra, and the dependences of the relative emission intensity from the halogenides and excited noble gas atoms on the corona discharge current are investigated. The main processes resulting in the production of halogenides, as well as xenon and krypton excited atoms, in the generation regions of a corona discharge are studied.  相似文献   

8.
The paper presents investigations of current–voltage and light emission characteristics of electrospraying of various liquids in atmospheric air. The spectroscopic measurements have shown that the onset of corona discharge coincides with the onset of electrospraying, with the voltage increasing. The emission intensity in selected spectral lines during electrospraying depends on spraying mode, discharge power and a kind of liquid. In the specific experimental conditions in air, mainly the N2 second positive system, which is visible as violet faint light, has been recorded. The emission intensity of other gaseous species, which could be product of electrosprayed molecules decomposition or dissociation, was at very low level for the voltages applied, i.e., for glow or onset streamer discharges. From the measured light emission spectra of discharges from capillary nozzle and liquid jet, the dependence of the amplitude of selected spectral lines on capillary-nozzle voltage has been determined and it was found that this relation can be approximated by a third-degree polynomial function. This approximation has been supported by theoretical considerations. The presented results support the hypothesis that faint electrical discharges (glow, onset streamers) usually occur during and are inherent to electrospraying.  相似文献   

9.
Non-thermal electrical discharges, such as corona discharge are apart of the source of ozone, charged, and excited species and acoustic noise also the source of electromagnetic radiation of different wavelengths. The important component of this radiation from the standpoint of photocatalyst activation is the ultraviolet radiation. We studied the role of UV radiation on corona discharge ozone production by placing the titanium dioxide photocatalyst into the discharge region. We used hollow needle to mesh DC corona discharge at atmospheric pressure with TiO2 globules on the mesh. The discharge was enhanced by the flow of air through the needle. We found that for the needle biased negatively addition of TiO2 photocatalyst on the mesh electrode drastically increases discharge ozone production as well as the ozone production yield. These quantities are also influenced by the mass of the used photocatalyst and its distribution in the discharge chamber.  相似文献   

10.
利用自制针—板式放电装置,在大气中进行电晕放电实验。用发光区域照片光斑的大小,讨论了电晕层厚度与电源电压的关系。在相同针板间距下,电晕层厚度随着电压的升高而增大;在相同电压下,电晕层厚度随着针板间距的增大而减小。由于高能电子密度能够通过氮分子第二正带系337.1 nm的光谱强度大小反映,因此对氮分子第二正带系337.1 nm谱线的强度用发射光谱法进行了测量。实验结果发现在针尖附近高能电子密度最大,并且高能电子密度随电压的升高而增大;电压一定时,高能电子密度随针板间距的增大而减小。在针板间距和电源电压不变的情况下,高能电子密度随针尖曲率半径的减小而增大。  相似文献   

11.
Experimental visualization for ionic wind motion originated from DC corona discharges in a needle-plate electrode system has been investigated. A vapor-phase biacetyl tracer with laser-induced phosphorescence emission is used for optically characterizing the ionic wind profile. The ionic wind blows the excited biacetyl molecules away in continuing the visible phosphorescence emission for a long radiative lifetime. The captured image with elapsing time from the excitation presents the shifting location of radiative tracer along the ionic wind direction. The experimental results show the ionic wind profile enhanced in the electric field direction corresponding to the corona discharge progress. Especially, the ionic wind near an initiating point of corona discharges is focused as an advantage of this optical technique. The ionic wind velocity along the electrode axis can be obtained at the location close enough to the corona discharge initiation point, and the velocity at 0.5 mm from the discharge point is figured out as 9.3 to 19.2 m/s under the condition of the EHD Reynolds number of 0.95×103 to 2.1×103.  相似文献   

12.
利用发射光谱方法对真空弧离子源放电等离子体特性进行了诊断。同时,基于局域热力学平衡等离子体的发射光谱理论,建立了等离子体的发射光谱拟合模型,对真空弧放电等离子体光谱进行了分析。针对TiH真空弧离子源,分别对330~340nm与498~503nm范围内Ti+离子与Ti原子的发射光谱进行了对比拟合,获得了较好的符合度,解决了传统Boltzmann斜率法计算等离子体温度需要孤立的不受附近谱线干扰的线状光谱的困难。最后,利用该方法计算了真空弧离子源在不同放电条件下的等离子体发射光谱、等离子体密度与温度参数。结果表明,TiH真空弧放电等离子体温度在1eV左右,同时,放电所产生的氢原子要远远大于金属原子,并且随着真空弧离子源馈入功率的增加,TiH电极中解吸附出来的氢比蒸发出来的金属增加得更多,这有利于TiH离子源在中子发生器方面的应用。  相似文献   

13.
Corona discharge is a self-sustained discharge which appears at electrodes with a small radius curvature in gas insulation. An almost invisible glow occurs just above the inception voltage. Corona phenomenon is mainly used in electro-technological processes to obtain space charge for electrostatic precipitation, separation of different particles, electrostatic liquid or solid coating, neutralization of space charge, etc. All of these processes rely on a strong nonhomogeneous electric field generated by a point – plate electrode system. When the critical value of the applied voltage is reached, the ionization processes near the point electrode start and give rise to the current between two electrodes. If the pointed electrode is positive, it is possible to observe an anomaly of the current – voltage (I-U) characteristic for the point-plate space. It means that while the voltage is raising the current density decreases in a narrow voltage area (2–3 kV). The anomaly was technically named as negative differential conductivity (dI/dU < 0). Unstable current can have a negative influence on electro-technological processes. The anomaly was detected for different shapes and materials of the electrode as well as for various temperatures and distances between electrodes. An oxidation layer, which appears on the metal electrode, also influences the ionization processes near the pointed electrode and causes a decrease of a current. In this paper measuring of the discharge activity in a point – plate electrode system is presented. Ionization of gas atoms and molecules in a high electric field and the following recombination of electrons and positive ions in the corona region can give rise to high-energy photons which produce new electrons in the field of discharge. Corona discharges are detected by DayCor Corona camera which can register UV emission generated by corona in a day light. The experiment was conducted with various shapes of the pointed electrode and distances between the high voltage and the grounded electrode under applied direct voltage with positive and negative polarity.  相似文献   

14.
Three types of DC electrical discharges in atmospheric air (streamer corona, transient spark and glow discharge) were tested for bio-decontamination of bacteria and yeasts in water solution, and spores on surfaces. Static vs. flowing treatment of contaminated water were compared, in the latter the flowing water either covered the grounded electrode or passed through the high voltage needle electrode. The bacteria were killed most efficiently in the flowing regime by transient spark. Streamer corona was efficient when the treated medium flew through the active corona region. The spores on plastic foil and paper surfaces were successfully inactivated by negative corona. The microbes were handled and their population evaluated by standard microbiology cultivation procedures. The emission spectroscopy of the discharges and TBARS (thiobarbituric acid reactive substances) absorption spectrometric detection of the products of lipid peroxidation of bacterial cell membranes indicated a major role of radicals and reactive oxygen species among the bio-decontamination mechanisms.  相似文献   

15.
A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 m\mu s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300–500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.  相似文献   

16.
Non-intrusive two-phase fluid pumping based on an electrohydrodynamically (EHD) induced flow phenomenon with free liquid surface exposed to gas-phase corona discharges is experimentally investigated. Dielectric liquid flow generated near a corona discharge electrode progresses toward an inclined plate electrode, and then climbs up the surface against the gravitational force for an air-wave (AW) type EHD pump. The AW type EHD pump is operated on ionic wind field along the inclined plate electrode. The pumping performance of time-averaged liquid flow rate and the liquid-phase flow motion are characterized. The liquid flow characteristics related to a dimensionless parameter of corona discharge fields are presented.  相似文献   

17.
空气电晕放电中的OH自由基发射光谱   总被引:2,自引:2,他引:0  
测量了大气压下向空气中喷射不饱和水蒸气的电晕放电产生的OH自由基的发射光谱。通过对光谱线强度变化的分析,研究了电场强度、放电方式、水蒸气比例等因素对OH自由基产生过程的影响,及OH自由基浓度在放电反应空间的分布特点。  相似文献   

18.
Atmospheric pressure needle-to-plane discharges have been explored experimentally in electrode gaps from 100 μm to 400 μm. These discharges can be self-sustained and follow the form of existing empirical formulae describing the current-voltage characteristics of corona discharge. The discharge can also be self-sustained by its lower sustaining voltage applied between the two electrodes once it is ignited by the initial high output voltage from power supply. The experiments of charging aerosol particles by the self-sustaining discharge operating with a lowered power have shown that for particles with a diameter of 46 nm, the charging efficiency attained 43.6%.  相似文献   

19.
The article contains results of a study of electric and optical characteristics of a negative corona discharge in a “needles-grid” electrode system in the mixtures He/Xe and He/Xe(Kr)/HCl, which are used in periodic pulsed electric-discharge Xe(6p−5d), XeCl, and KrCl lasers. The corona discharge was ignited in a multielectrode system whose length is commensurable with the length of the active medium of the lasers. Voltage-current characteristics, radiation spectra of the discharge plasma, and the dependences of the radiation intensity of atomic spectral lines and the band λ=308 nm of XeCl (B-X) on parameters of the corona discharge are studied. For the mixture He/Xe the corona discharge exists as a spatially homogeneous discharge that is intermediate between corona and glow discharges and is transformed into an anode streamer at higher charge voltages. Collisional purification of the 6p states of the Xe atom by helium was observed. In the mixture He/Xe/HCl the corona discharge is ignited in the form of individual generation zones and a dark external region and can be used in electric systems for pumping the active media of XeCl and KrCl lasers. Uzhgorod State University, 46, Pidgirna St., Uzhgorod, 294000, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 2, pp. 205–210, March–April, 1998.  相似文献   

20.
《Journal of Electrostatics》2005,63(6-10):615-620
Several studies have shown that a surface non-thermal plasma may be used as an electrofluidodynamic actuator for airflow control. For few years, we has been working on this subject, especially in the case of DC corona discharges and AC barrier discharges established at the wall of profiles. The present paper deals with a new type of surface plasma using a sliding discharge. This discharge, excited here by a negative AC voltage with a positive DC component, is created in a three-electrode geometry: one DC positive electrode and two negative AC electrodes at the same voltage. Then a barrier discharge is established between the positive electrode and the first negative one when a surface corona discharge or sliding discharge is generated between the positive electrode and the second negative one. In this preliminary study, the goal is to obtain a stable sliding discharge. Then the electrical properties of this discharge are observed and briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号