首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Thin Ni/Si films are prepared by depositing a Ni layer with a thickness of 100 nm on a Si (100) substrate. The as-deposited thin-film specimens are indented to a maximum depth of 500 nm using a nanoindentation technique and are then annealed at temperatures of 200°C, 300°C, 500°C and 800°C for 2 min. The microstructural changes and phases induced in the various specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). Based on the load-displacement data obtained in the nanoindentation tests, the hardness and Young’s modulus of the as-deposited specimens are found to be 13 GPa and 177 GPa, respectively. The microstructural observations reveal that the nanoindentation process prompts the transformation of the indentation-affected zone of the silicon substrate from a diamond cubic structure to a mixed structure comprising amorphous phase and metastable Si III and Si XII phases. Following annealing at temperatures of 200∼500°C, the indented zone contains either a mixture of amorphous phase and Si III and Si XII phases, or Si III and Si XII phases only, depending on the annealing temperature. In addition, the annealing process prompts the formation of nickel silicide phases at the Ni/Si interface or within the indentation zone. The composition of these phases depends on the annealing temperature. Specifically, Ni2Si is formed at a temperature of 200°C, NiSi is formed at a temperature of 300°C and 500°C, and NiSi2 is formed at 800°C.  相似文献   

2.
Si nanocrystals (NCs) embedded in an SiC matrix were prepared by the deposition of Si-rich Si1?xCx/SiC nanomultilayer films using magnetron sputtering, subsequently followed by thermal annealing in the range of 800~1200 °C. As the annealing temperature increases to 1000 °C, Si NCs begin to form and SiC NCs also start to emerge at the annealing temperature of 1200 °C. With the increase of annealing temperature, two photoluminescence (PL) peaks have an obvious redshift. The intensity of the low-energy PL peak around 669~742 nm gradually lowers, however the intensity of high-energy PL peak around 601~632 nm enhances. The low-energy PL peak might attribute to dangling bonds in amorphous Si (a-Si) sublayers, and the redshift of this peak might be related to the passivation of Si dangling bonds. Whereas the origin of the high-energy PL peak may be the emergence of Si NCs, the redshift of this peak correlates with the change in the size of Si NCs.  相似文献   

3.
SiO x H y C z nanometric layers are deposited from hexamethyldisiloxane by atmospheric pressure microwave plasma torch on Si(100) substrates submitted to temperatures varying on the range [0 °C; 120 °C]. Atomic force microscopy (AFM) characterizations of samples grown at intermediate substrate temperatures (~30 °C) demonstrate a layer-by-layer growth (Frank van der Merwe growth) leading to smooth flat and compact films while films deposited at lower and higher substrates temperatures show an island-like growth (Volmer-Weber growth) generating a high surface roughness. Concomitantly, a detailed infrared spectroscopy analysis of the growing films evidences structural modifications due to changes in the bond types, Si-O-Si conformation and stoichiometry correlated with scanning electron microscopy and AFM characterizations. Then, deposition conditions and specific microstructure are selected with the aim of generating 3-dimensional SiO x H y C z nanostructure arrays on nanoindented Si (100) templates. The first results are discussed.  相似文献   

4.
Phase-change behavior in Si/Sb80Te20 nanocomposite multilayer films were investigated by utilizing in situ resistance measurements. It was found that the crystallization temperature increased firstly with increasing Si layer thickness within the multilayer films, and then remained almost unchanged at 170°C. The multilayer films have the merits of both good thermal stability and fast phase-change speed. An increase in crystallization temperature by around 95°C was observed for the multilayer films when the Sb80Te20 layer thickness was reduced to 3 nm. Cross-sectional transmission electron microscopy (TEM) observations revealed that Si/Sb80Te20 nanocomposite multilayer films had layered structures with clear interfaces. The reversible phase change between set and reset states was verified in phase-change random access memory (PCRAM) cell based on [Si (1 nm)/Sb80Te20 (5 nm)]17 multilayer film.  相似文献   

5.
Nd-doped Si-rich silicon oxide thin films were produced by radio frequency magnetron co-sputtering of three confocal cathodes: Si, SiO2, and Nd2O3, in pure argon plasma at 500 °C. The microstructure and optical properties of the films were investigated versus silicon excess and post-deposition annealing treatment by means of ellipsometry and Fourier transform infrared spectrometry as well as by the photoluminescence method. A notable emission from Nd3+ ions was obtained for the as-deposited sample, while the films annealed at 900 °C showed the highest peak intensity. The maximum emission was observed for the films with 4.7 at% of Si excess.  相似文献   

6.
Beryllium-nitride (Be3N2) thin films were grown on silicon Si(1 1 1) substrates by pulsed laser deposition in a RIBER LDM-32 system, and characterized with in/ex situ XPS and SIMS. The structure of the films was analyzed with XRD. The films were further analyzed for surface topographic information with SEM and profilometry, and for optical properties with optical spectroscopy. It was observed that the material, prepared at room temperature and annealed at 700 °C for 2 h, had undergone a partial phase transition to a mixture of amorphous and crystalline phases, and the thin films showed a large anti-reflection window in the visible. Therefore, the annealed Be3N2 thin films would be potentially useful for stable electronic packaging with desired photonic features.  相似文献   

7.
The growth of ultra-thin (<2 nm) silicon-oxide films was investigated on Si(100):H, Si(111):H, and a-Si:H surfaces in a pure water atmosphere (0.1–10 Pa) at low temperatures of 30–250 °C. Oxidation was induced photochemically by pulsed F2-laser radiation at 157 nm. The thickness and composition of the growing oxide films were monitored in real time by spectroscopic ellipsometry in the photon energy range of 1.15–4.75 eV. The mechanism of laser-induced silicon oxidation in a H2O atmosphere is shown to differ fundamentally from the classical Deal–Grove mechanism of thermal oxidation at 900–1200 °C, as well as from the photoinduced low-temperature oxidation in an O2 atmosphere. In particular, the film thickness essentially does not depend on temperature below 250 °C. A kinetic model is developed for low-temperature silicon oxidation in a H2O atmosphere. According to this model, the growth is limited at small thicknesses by the oxidation reaction and at larger thicknesses by reactions of the diffusing oxidizing species in the oxide layer. Very good agreement is established between this kinetic model and the ellipsometric measurements and the temperature and pressure dependence of the water oxidation process. PACS 82.65.+r; 07.60.Fs; 81.65.Mq; 82.50.Hp  相似文献   

8.
4He+ ions backscattering spectrometry and x-ray diffractometry were used to study interactions between PtSi and Pt, NiSi and Ni, PdGe and Pd. Due to the dissociation of the compound the formation of a phase richer in metal was observed to grow at the original compound/metal interface in the temperature range considered, 280–325°C for Pt2Si, 325°C for Ni2Si and 180–260°C for Pd2Ge. The growth kinetics of these new phases (Pt2Si and Pd2Ge) follow a parabolic relation between thickness and annealing time. At a given temperature the growth rate of Pt2Si and Pd2Ge in compound-metal structure is a factor higher than in the usual semiconductor-metal structure. Partially supported by Consiglio nazionale delle Ricerche (Italy) and by Commission of the European Communities.  相似文献   

9.
《Surface science》2003,470(1-2):193-200
We have conducted photoemission electron microscope (PEEM) and Auger electron spectroscopy (AES) studies on the Cu(30 nm)/3C–SiC(1 0 0) and Cu(30 nm)/Si(1 0 0) samples annealed successively up to 850 °C. With PEEM, lateral diffusion of Cu atoms on the 3C–SiC substrate was observed at 400 °C while no lateral diffusion was seen for the Cu/Si(1 0 0) samples up to 850 °C. The 30 nm Cu thin film on 3C–SiC began to agglomerate at 550 °C, similar to the case for the Cu/Si(1 0 0) system. No further spread of the lateral diffusion region was found in subsequent annealing up to 850 °C for Cu/3C–SiC while separated regular-sized dot structures were found at 850 °C for Cu/Si(1 0 0). AES studies of Cu/Si(1 0 0) system showed partial interface reaction during Cu deposition onto the Si(1 0 0) substrate and oxidation of the resultant Cu3Si to form SiO2 on the specimen surface at room temperature in air. Surface segregation of Si and C was observed after annealing at 300 °C for Cu/Si(1 0 0) and at 850 °C for the Cu/3C–SiC system. We have successfully elucidated the observed phenomena by combining PEEM and AES considering diffusion of the constituent elements and/or reaction at interfaces.  相似文献   

10.
Effects of silane temperature (T g) before glow-discharge on the optical and transport properties of hydrogenated amorphous silicon (a-Si:H) thin films were investigated. The optical measurements show that the refractive index increases with increasing T g. The transport characterizations show that when T g increases, the dark conductivity increases. However, the temperature coefficient of resistance decreases. In addition, after holding at 130°C for 20 h, the resistance variation, ΔR/R, of the films deposited at T g = room temperature (10.8%) is much larger than those deposited at silane temperatures of 80°C (3%) and 160°C (2%). This can be attributed to different rates of defect creation in a-Si:H films caused by various T g.  相似文献   

11.
A microstructural study of DC-sputtered Fe93−xZr3B4Agx films on Si(0 0 1) substrates has been carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). All samples were deposited as a function of additive Ag content (x=0–6 at%), and annealed in the range of temperature, 300–600°C, for 1 h in order to obtain enhanced soft magnetic properties. Through XRD and TEM investigation, Ag-free Fe93Zr3B4 films on Si(0 0 1) substrates consisted of nano-crystalline Fe-based phases. In the presence of Ag additive element, the microstructure of as-deposited Fe93−xZr3B4Agx films consisted of a mixture of majority of Fe-based amorphous and Ag crystalline phases. In this case, additive element, Ag played a role in retarding the formation of Fe-based crystalline phases during deposition, and insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. As the content of Ag increased, the intensity of Ag crystalline XRD peak increased. Crystallization of Fe-based amorphous phase in the matrix of Fe88Zr3B4Ag5 thin films occurred at an annealing temperature of 400°C. In the case of Fe88Zr3B4Ag5 films annealed at 500°C, a much enhanced permeability of the Fe-based alloy thin films associated with nano-crystalline phases was achieved.  相似文献   

12.
This work involves the study of the positive emittance-switching (i.e. emittance that increases with increasing the temperature) of thermochromic VO2 films deposited using reactive pulsed laser deposition (RPLD) on Al substrates. The temperature dependence of the emittance of a 260 nm-thick VO2 film on Al substrate revealed a maximum of the emittance of 0.29 around 68 °C. It is attributed to an increase in the infrared radiation absorption by the VO2 film due to the coexistence of both insulating and metallic phases in the vicinity of the transition temperature of VO2. The emittance tunability between 25 °C and 68 °C is 0.21. Since practical SRD application requires both high emittance at high temperature and large tunability, we demonstrate, by both simulation and fabrication, that these goals can be accomplished to some extent by a top dielectric a-Si:H/SiO2 λ/4 stack layer. In fact, the addition of a-Si:H/SiO2 λ/4 overlayer results in an increase of the maximum value of the emittance by 114% (from 0.29 to 0.62) as well as an increase of the tunability by 81% (from 0.21 to 0.38). This work reports an important improvement of the positive emittance-switching efficiency of the VO2-based structures and holds promise for a new generation of smart radiator devices (SRDs) for a passive thermal control of spacecrafts.  相似文献   

13.
Thin film of LiNi0.8Co0.2O2 (LNCO) has been prepared by Pulsed Laser Deposition (PLD) technique at various post annealing temperatures. XRD results of LNCO thin film deposited on both Pt and Si substrates reveal relatively good crystalline nature at 500 °C which is in good agreement with the electrochemical results. ICP-AES composition analysis indicates 10 to 5% Li loss in the post annealed (400–700 °C) LNCO/Pt thin films; however the as prepared LNCO/Pt films show 17% excess of Li which are comparable with the LNCO target results. SEM analysis indicates phase separation at 600 °C and porous nature at 700–800 °C for LNCO/Pt films. Cyclic voltammetry (CV) scans of LiNi0.8Co0.2O2 film post annealed at 500 °C show a pair of main cathodic and anodic peaks at 3.64 and 3.4 V, respectively with a narrow peak separation reveals good stability upon cycling. Whereas the LNCO films annealed at 600 °C and 700 °C indicate an additional anodic peak at lower potential besides a pair of major peaks which may be due to the phase separated morphology as evidenced from SEM analysis. Based on the structural and electrochemical results, a lithium-ion micro cell has been constructed with LNCO/Li3.4V0.6Si0.4O4(LVSO)/SnO configuration with the thickness of 1.535 µm and its electrochemical properties have been studied.  相似文献   

14.
High quality Cu–Co alloy films with excellent metallic luster have been electrolytically deposited directly onto n-Si (1 0 0) substrate, thereby eliminating the need of a conducting seed layer, which is otherwise required when the films were grown on insulating substrates (Al2O3). The as-deposited Cu–Co films exhibit relatively higher magnetoresistance (MR) in comparison with the as-deposited films on Al2O3 under identical conditions. The observed increase in MR could be attributed to the reduced substrate current shunting. The MR further improves to 2.67% (at H=10 kOe) with vacuum annealing (at 425°C for 30 min) of the films on Si. This has been ascribed to the separation of Cu and Co phases resulting in a magnetic granular nanostructure. This value of MR of annealed films on Si is, however, lower in comparison with the value obtained for annealed films deposited on Al2O3. Glancing angle X-ray diffraction (GAXRD) has revealed the formation of copper silicide in these samples, which is responsible for the lower value of MR. Thus we have observed good MR with a copper silicide host matrix.  相似文献   

15.
We present a morphologic and spectroscopic study of cluster-assembled TiO x films deposited by supersonic cluster beam source on clean silicon substrates. Data show the formation of nanometer—thick and uniform titanium silicides film at room temperature (RT). Formation of such thick TiSi x film goes beyond the classical interfacial limit set by the Ti/Si diffusion barrier. The enhancement of Si diffusion through the TiO x film is explained as a direct consequence of the porous film structure. Upon ultra high vacuum annealing beyond 600 °C, TiSi2 is formed and the oxygen present in the film is completely desorbed. The morphology of the nanostructured silicides is very stable for thermal treatments in the RT—1000 °C range, with a slight cluster size increase, resulting in a film roughness an order of magnitude smaller than other TiO x /Si and Ti/Si films in the same temperature range. The present results might have a broad impact in the development of new and simple TiSi synthesis methods that favour their integration into nanodevices.  相似文献   

16.
Amorphous Si:C:O:H films were fabricated at low temperature by C2F6 and O2/C2F6 plasma treating silicone oil liquid. The a-Si:C:O:H films fabricated by C2F6 plasma treatment exhibited white photoluminescence at room temperature, while that by O2/C2F6 plasma treatment exhibited blue photoluminescence. Fourier transformed infrared spectroscopy and Raman spectroscopy studies showed that the sp3 and sp2 hybridized carbons, SiC bond, SiO bond and carbon-related defects in a-Si:C:O:H films correlated with photoluminescence. It is suggested that the blue emission at 469 nm was related to the sp3 and sp2 hybridized carbons, SiC bond, carbon dangling bonds as well as SiO short chains and small clusters, while the light emitting at 554 nm was related to the carbon-related defects.  相似文献   

17.
Surface plasmon tuning via thermally induced refractive index changes in ferroelectrics is investigated. Epitaxial (Ba0.7Sr0.3)TiO3 (BST) thin films were deposited on MgO (001) substrates by pulsed laser deposition. The refractive index of BST thin films measured by the prism-coupling technique was found to increase from 2.3932 (TE)/1.9945 (TM) at room temperature to 2.3949 (TE)/1.9965 (TM) at 66°C. Then 30-nm-Ag gratings with periodicity 750 nm and width 300 nm were fabricated on BST by soft ultraviolet nanoimprint lithography and subsequent lift-off process. The reflection spectra from 500 to 1000 nm with incident angle from 5° to 60° were measured at room temperature and 66°C, with a collimated and p-polarized light incident perpendicularly to the grating direction. Several modes were observed from the spectra. At 66°C, a red shift of a dip at about 850 nm by 2 nm was obtained at an incident angle of 15°. Calculations confirmed that the observed modes belong to the (−1), (2), (−2) and (3) surface plasmon modes from the Ag and BST interfaces and localized mode; the red shift by thermal tuning is also confirmed. The results indicate the feasibility of active modulation in surface plasmon resonance in solid-state structures.  相似文献   

18.
The optical characteristics of nickel films deposited on Si(100) substrates by vacuum thermal evaporation have been studied. The thickness and optical constants of the films are determined using monochromatic zero ellipsometry, while the inverse problems are solved within the three-layer optical model of the samples. It is shown that thermal annealing leads to a change in the optical constants of nickel films in the heating-temperature range of 500–900°C. Boron carbonitride layers deposited on silicon substrates with a nickel sublayer are analyzed within multilayer optical models, which make it possible to determine the refractive index and absorption coefficient distributions along the thickness of the synthesized Si(100)/Ni/BC x N y structure.  相似文献   

19.
In the present work, a special solid phase epitaxy method has been adapted for the preparation of CoSi2 film. This method includes an epitaxial growth of Co films on Si (1 0 0) substrate, and in situ annealing of the Co/Si films in vacuum. It has been found that at the substrate temperature of 360°C, fcc cobalt film grows epitaxially on the Si (1 0 0) surface. The crystallographic orientation relations between fcc Co film and Si substrate determined from the electron diffraction result are: (0 0 1) Co//(0 0 1) Si, [1 0 0] Co//[1 1 0]Si. Upon annealing at temperatures range from 500 to 600°C, Co film reacts with Si substrate and transforms into CoSi2. The CoSi2 films prepared by this way are characterized by XTEM, XPS and AFM.  相似文献   

20.
Dry O2 oxidation up to 400°C, water immersion at room temperature or H2S sulphidation at 400°C forms oxide or sulphide films on polycrystalline Co and Ni foils. X-ray photoelectron spectra (XPS) of the Co 2p and Ni 2p core levels and valence band (VB) structure changes allow the identification of the chemical state of such films and their electronic properties. They are compared with the films obtained on Mo in similar conditions. Ni appears less reactive than Co during O2 or water oxidation and is considered as a more noble metal. Dry oxidation mainly induces CoO while water immersion induces formation of CoO(OH). For Ni, phases like Ni2O3, Ni(OH)2 and/or NiO(OH) are the most probable products, respectively. H2S sulphidation always produces a sulphur-rich Co or Ni phase. The VB response to sulphidation of the three studied metals shows that Co or Ni sulphides are potential electron-donors to MoS2. Such results are relevant to the synergy observed in hydrotreating catalysis with these sulphides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号