首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-dimensional target distributions. In contrast with standard Markov chain Monte Carlo (MCMC) algorithms, it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour for the simulated trajectories. However, similarly to algorithms based on random walk or Langevin proposals, the number of steps required to explore the target distribution typically grows with the dimension of the state space. We define a generalized HMC algorithm which overcomes this problem for target measures arising as finite-dimensional approximations of measures π which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert space. The key idea is to construct an MCMC method which is well defined on the Hilbert space itself.We successively address the following issues in the infinite-dimensional setting of a Hilbert space: (i) construction of a probability measure Π in an enlarged phase space having the target π as a marginal, together with a Hamiltonian flow that preserves Π; (ii) development of a suitable geometric numerical integrator for the Hamiltonian flow; and (iii) derivation of an accept/reject rule to ensure preservation of Π when using the above numerical integrator instead of the actual Hamiltonian flow. Experiments are reported that compare the new algorithm with standard HMC and with a version of the Langevin MCMC method defined on a Hilbert space.  相似文献   

2.
The evolution of DNA sequences can be described by discrete state continuous time Markov processes on a phylogenetic tree. We consider neighbor-dependent evolutionary models where the instantaneous rate of substitution at a site depends on the states of the neighboring sites. Neighbor-dependent substitution models are analytically intractable and must be analyzed using either approximate or simulation-based methods. We describe statistical inference of neighbor-dependent models using a Markov chain Monte Carlo expectation maximization (MCMC-EM) algorithm. In the MCMC-EM algorithm, the high-dimensional integrals required in the EM algorithm are estimated using MCMC sampling. The MCMC sampler requires simulation of sample paths from a continuous time Markov process, conditional on the beginning and ending states and the paths of the neighboring sites. An exact path sampling algorithm is developed for this purpose.  相似文献   

3.
While mixtures of Gaussian distributions have been studied for more than a century, the construction of a reference Bayesian analysis of those models remains unsolved, with a general prohibition of improper priors due to the ill-posed nature of such statistical objects. This difficulty is usually bypassed by an empirical Bayes resolution. By creating a new parameterization centered on the mean and possibly the variance of the mixture distribution itself, we manage to develop here a weakly informative prior for a wide class of mixtures with an arbitrary number of components. We demonstrate that some posterior distributions associated with this prior and a minimal sample size are proper. We provide Markov chain Monte Carlo (MCMC) implementations that exhibit the expected exchangeability. We only study here the univariate case, the extension to multivariate location-scale mixtures being currently under study. An R package called Ultimixt is associated with this article. Supplementary material for this article is available online.  相似文献   

4.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

5.
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the Expectation–Maximization algorithm. A suitable number of components is then determined conventionally by comparing different mixture models using penalized log-likelihood criteria such as Bayesian information criterion. We propose fitting MLMMs with variational methods, which can perform parameter estimation and model selection simultaneously. We describe a variational approximation for MLMMs where the variational lower bound is in closed form, allowing for fast evaluation and develop a novel variational greedy algorithm for model selection and learning of the mixture components. This approach handles algorithm initialization and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparameterize the model and show empirically that there is a gain in efficiency in variational algorithms similar to that in Markov chain Monte Carlo (MCMC) algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler, which suggests that reparameterizations can lead to improved convergence in variational algorithms just as in MCMC algorithms. Supplementary materials for the article are available online.  相似文献   

6.
Gaussian graphical models (GGMs) are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of GGMs extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous subgroups. In this article, we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable GGMs. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo (MCMC) algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the MCMC algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which MCMC algorithms are too slow to be practically useful.  相似文献   

7.
In the following article, we investigate a particle filter for approximating Feynman–Kac models with indicator potentials and we use this algorithm within Markov chain Monte Carlo (MCMC) to learn static parameters of the model. Examples of such models include approximate Bayesian computation (ABC) posteriors associated with hidden Markov models (HMMs) or rare-event problems. Such models require the use of advanced particle filter or MCMC algorithms to perform estimation. One of the drawbacks of existing particle filters is that they may “collapse,” in that the algorithm may terminate early, due to the indicator potentials. In this article, using a newly developed special case of the locally adaptive particle filter, we use an algorithm that can deal with this latter problem, while introducing a random cost per-time step. In particular, we show how this algorithm can be used within MCMC, using particle MCMC. It is established that, when not taking into account computational time, when the new MCMC algorithm is applied to a simplified model it has a lower asymptotic variance in comparison to a standard particle MCMC algorithm. Numerical examples are presented for ABC approximations of HMMs.  相似文献   

8.
This article discusses design ideas useful in the development of Markov chain Monte Carlo (MCMC) software. Goals of the design are to facilitate analysis of as many statistical models as possible, and to enable users to experiment with different MCMC algorithms as a research tool. These ideas have been used in YADAS, a system written in the Java language, but are also applicable in other object-oriented languages.  相似文献   

9.
This paper is concerned with parameter estimation in linear and non-linear Itô type stochastic differential equations using Markov chain Monte Carlo (MCMC) methods. The MCMC methods studied in this paper are the Metropolis–Hastings and Hamiltonian Monte Carlo (HMC) algorithms. In these kind of models, the computation of the energy function gradient needed by HMC and gradient based optimization methods is non-trivial, and here we show how the gradient can be computed with a linear or non-linear Kalman filter-like recursion. We shall also show how in the linear case the differential equations in the gradient recursion equations can be solved using the matrix fraction decomposition. Numerical results for simulated examples are presented and discussed in detail.  相似文献   

10.
We consider Bayesian analysis of data from multivariate linear regression models whose errors have a distribution that is a scale mixture of normals. Such models are used to analyze data on financial returns, which are notoriously heavy-tailed. Let π denote the intractable posterior density that results when this regression model is combined with the standard non-informative prior on the unknown regression coefficients and scale matrix of the errors. Roughly speaking, the posterior is proper if and only if nd+k, where n is the sample size, d is the dimension of the response, and k is number of covariates. We provide a method of making exact draws from π in the special case where n=d+k, and we study Markov chain Monte Carlo (MCMC) algorithms that can be used to explore π when n>d+k. In particular, we show how the Haar PX-DA technology studied in Hobert and Marchev (2008) [11] can be used to improve upon Liu’s (1996) [7] data augmentation (DA) algorithm. Indeed, the new algorithm that we introduce is theoretically superior to the DA algorithm, yet equivalent to DA in terms of computational complexity. Moreover, we analyze the convergence rates of these MCMC algorithms in the important special case where the regression errors have a Student’s t distribution. We prove that, under conditions on n, d, k, and the degrees of freedom of the t distribution, both algorithms converge at a geometric rate. These convergence rate results are important from a practical standpoint because geometric ergodicity guarantees the existence of central limit theorems which are essential for the calculation of valid asymptotic standard errors for MCMC based estimates.  相似文献   

11.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

12.
One main limitation of the existing optimal scaling results for Metropolis–Hastings algorithms is that the assumptions on the target distribution are unrealistic. In this paper, we consider optimal scaling of random-walk Metropolis algorithms on general target distributions in high dimensions arising from practical MCMC models from Bayesian statistics. For optimal scaling by maximizing expected squared jumping distance (ESJD), we show the asymptotically optimal acceptance rate 0.234 can be obtained under general realistic sufficient conditions on the target distribution. The new sufficient conditions are easy to be verified and may hold for some general classes of MCMC models arising from Bayesian statistics applications, which substantially generalize the product i.i.d. condition required in most existing literature of optimal scaling. Furthermore, we show one-dimensional diffusion limits can be obtained under slightly stronger conditions, which still allow dependent coordinates of the target distribution. We also connect the new diffusion limit results to complexity bounds of Metropolis algorithms in high dimensions.  相似文献   

13.
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm’s accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.  相似文献   

14.
Inference for spatial generalized linear mixed models (SGLMMs) for high-dimensional non-Gaussian spatial data is computationally intensive. The computational challenge is due to the high-dimensional random effects and because Markov chain Monte Carlo (MCMC) algorithms for these models tend to be slow mixing. Moreover, spatial confounding inflates the variance of fixed effect (regression coefficient) estimates. Our approach addresses both the computational and confounding issues by replacing the high-dimensional spatial random effects with a reduced-dimensional representation based on random projections. Standard MCMC algorithms mix well and the reduced-dimensional setting speeds up computations per iteration. We show, via simulated examples, that Bayesian inference for this reduced-dimensional approach works well both in terms of inference as well as prediction; our methods also compare favorably to existing “reduced-rank” approaches. We also apply our methods to two real world data examples, one on bird count data and the other classifying rock types. Supplementary material for this article is available online.  相似文献   

15.
In this paper, we consider the model selection problem for discretely observed ergodic multi-dimensional diffusion processes. In order to evaluate the statistical models, Akaike’s information criterion (AIC) is a useful tool. Since AIC is constructed by the maximum log likelihood and the dimension of the parameter space, it may look easy to get AIC even for discretely observed diffusion processes. However, there is a serious problem that a transition density of a diffusion process does not generally have an explicit form. Instead of the exact log-likelihood, we use a contrast function based on a locally Gaussian approximation of the transition density and we propose the contrast-based information criterion.  相似文献   

16.
Analyses of multivariate ordinal probit models typically use data augmentation to link the observed (discrete) data to latent (continuous) data via a censoring mechanism defined by a collection of “cutpoints.” Most standard models, for which effective Markov chain Monte Carlo (MCMC) sampling algorithms have been developed, use a separate (and independent) set of cutpoints for each element of the multivariate response. Motivated by the analysis of ratings data, we describe a particular class of multivariate ordinal probit models where it is desirable to use a common set of cutpoints. While this approach is attractive from a data-analytic perspective, we show that the existing efficient MCMC algorithms can no longer be accurately applied. Moreover, we show that attempts to implement these algorithms by numerically approximating required multivariate normal integrals over high-dimensional rectangular regions can result in severely degraded estimates of the posterior distribution. We propose a new data augmentation that is based on a covariance decomposition and that admits a simple and accurate MCMC algorithm. Our data augmentation requires only that univariate normal integrals be evaluated, which can be done quickly and with high accuracy. We provide theoretical results that suggest optimal decompositions within this class of data augmentations, and, based on the theory, recommend default decompositions that we demonstrate work well in practice. This article has supplementary material online.  相似文献   

17.
Fitting hierarchical Bayesian models to spatially correlated datasets using Markov chain Monte Carlo (MCMC) techniques is computationally expensive. Complicated covariance structures of the underlying spatial processes, together with high-dimensional parameter space, mean that the number of calculations required grows cubically with the number of spatial locations at each MCMC iteration. This necessitates the need for efficient model parameterizations that hasten the convergence and improve the mixing of the associated algorithms. We consider partially centred parameterizations (PCPs) which lie on a continuum between what are known as the centered (CP) and noncentered parameterizations (NCP). By introducing a weight matrix we remove the conditional posterior correlation between the fixed and the random effects, and hence construct a PCP which achieves immediate convergence for a three-stage model, based on multiple Gaussian processes with known covariance parameters. When the covariance parameters are unknown we dynamically update the parameterization within the sampler. The PCP outperforms both the CP and the NCP and leads to a fully automated algorithm which has been demonstrated in two simulation examples. The effectiveness of the spatially varying PCP is illustrated with a practical dataset of nitrogen dioxide concentration levels. Supplemental materials consisting of appendices, datasets, and computer code to reproduce the results are available online.  相似文献   

18.
We present a Markov chain Monte Carlo (MCMC) method for generating Markov chains using Markov bases for conditional independence models for a four-way contingency table. We then describe a Markov basis characterized by Markov properties associated with a given conditional independence model and show how to use the Markov basis to generate random tables of a Markov chain. The estimates of exact p-values can be obtained from random tables generated by the MCMC method. Numerical experiments examine the performance of the proposed MCMC method in comparison with the χ 2 approximation using large sparse contingency tables.  相似文献   

19.
本文研究泊松逆高斯回归模型的贝叶斯统计推断.基于应用Gibbs抽样,Metropolis-Hastings算法以及Multiple-Try Metropolis算法等MCMC统计方法计算模型未知参数和潜变量的联合贝叶斯估计,并引入两个拟合优度统计量来评价提出的泊松逆高斯回归模型的合理性.若干模拟研究与一个实证分析说明方...  相似文献   

20.
Adaptive Markov Chain Monte Carlo (AMCMC) is a class of MCMC algorithms where the proposal distribution changes at every iteration of the chain. In this case it is important to verify that such a Markov Chain indeed has a stationary distribution. In this paper we discuss a diffusion approximation to a discrete time AMCMC. This diffusion approximation is different when compared to the diffusion approximation as in Gelman et al. [5] where the state space increases in dimension to ∞. In our approach the time parameter is sped up in such a way that the limiting process (as the mesh size goes to 0) approaches to a non-trivial diffusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号