首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the estimation of parametric models for stationary spatial or spatio-temporal data on a d-dimensional lattice, for d?2, the achievement of asymptotic efficiency under Gaussianity, and asymptotic normality more generally, with standard convergence rate, faces two obstacles. One is the “edge effect”, which worsens with increasing d. The other is the possible difficulty of computing a continuous-frequency form of Whittle estimate or a time domain Gaussian maximum likelihood estimate, due mainly to the Jacobian term. This is especially a problem in “multilateral” models, which are naturally expressed in terms of lagged values in both directions for one or more of the d dimensions. An extension of the discrete-frequency Whittle estimate from the time series literature deals conveniently with the computational problem, but when subjected to a standard device for avoiding the edge effect has disastrous asymptotic performance, along with finite sample numerical drawbacks, the objective function lacking a minimum-distance interpretation and losing any global convexity properties. We overcome these problems by first optimizing a standard, guaranteed non-negative, discrete-frequency, Whittle function, without edge-effect correction, providing an estimate with a slow convergence rate, then improving this by a sequence of computationally convenient approximate Newton iterations using a modified, almost-unbiased periodogram, the desired asymptotic properties being achieved after finitely many steps. The asymptotic regime allows increase in both directions of all d dimensions, with the central limit theorem established after re-ordering as a triangular array. However our work offers something new for “unilateral” models also. When the data are non-Gaussian, asymptotic variances of all parameter estimates may be affected, and we propose consistent, non-negative definite estimates of the asymptotic variance matrix.  相似文献   

2.
In this paper on developing shrinkage for spectral analysis of multivariate time series of high dimensionality, we propose a new nonparametric estimator of the spectral matrix with two appealing properties. First, compared to the traditional smoothed periodogram our shrinkage estimator has a smaller L2 risk. Second, the proposed shrinkage estimator is numerically more stable due to a smaller condition number. We use the concept of “Kolmogorov” asymptotics where simultaneously the sample size and the dimensionality tend to infinity, to show that the smoothed periodogram is not consistent and to derive the asymptotic properties of our regularized estimator. This estimator is shown to have asymptotically minimal risk among all linear combinations of the identity and the averaged periodogram matrix. Compared to existing work on shrinkage in the time domain, our results show that in the frequency domain it is necessary to take the size of the smoothing span as “effective sample size” into account. Furthermore, we perform extensive Monte Carlo studies showing the overwhelming gain in terms of lower L2 risk of our shrinkage estimator, even in situations of oversmoothing the periodogram by using a large smoothing span.  相似文献   

3.
In multivariate statistics under normality, the problems of interest are random covariance matrices (known as Wishart matrices) and “ratios” of Wishart matrices that arise in multivariate analysis of variance (MANOVA) (see 24). The bimatrix variate beta type IV distribution (also known in the literature as bimatrix variate generalised beta; matrix variate generalization of a bivariate beta type I) arises from “ratios” of Wishart matrices. In this paper, we add a further independent Wishart random variate to the “denominator” of one of the ratios; this results in deriving the exact expression for the density function of the bimatrix variate extended beta type IV distribution. The latter leads to the proposal of the bimatrix variate extended F distribution. Some interesting characteristics of these newly introduced bimatrix distributions are explored. Lastly, we focus on the bivariate extended beta type IV distribution (that is an extension of bivariate Jones’ beta) with emphasis on P(X1<X2) where X1 is the random stress variate and X2 is the random strength variate.  相似文献   

4.
A finite sample performance measure of multivariate location estimators is introduced based on “tail behavior”. The tail performance of multivariate “monotone” location estimators and the halfspace depth based “non-monotone” location estimators including the Tukey halfspace median and multivariate L-estimators is investigated. The connections among the finite sample performance measure, the finite sample breakdown point, and the halfspace depth are revealed. It turns out that estimators with high breakdown point or halfspace depth have “appealing” tail performance. The tail performance of the halfspace median is very appealing and also robust against underlying population distributions, while the tail performance of the sample mean is very sensitive to underlying population distributions. These findings provide new insights into the notions of the halfspace depth and breakdown point and identify the important role of tail behavior as a quantitative measure of robustness in the multivariate location setting.  相似文献   

5.
A method for simultaneous modelling of the Cholesky decomposition of several covariance matrices is presented. We highlight the conceptual and computational advantages of the unconstrained parameterization of the Cholesky decomposition and compare the results with those obtained using the classical spectral (eigenvalue) and variance-correlation decompositions. All these methods amount to decomposing complicated covariance matrices into “dependence” and “variance” components, and then modelling them virtually separately using regression techniques. The entries of the “dependence” component of the Cholesky decomposition have the unique advantage of being unconstrained so that further reduction of the dimension of its parameter space is fairly simple. Normal theory maximum likelihood estimates for complete and incomplete data are presented using iterative methods such as the EM (Expectation-Maximization) algorithm and their improvements. These procedures are illustrated using a dataset from a growth hormone longitudinal clinical trial.  相似文献   

6.
Godambe (1985) introduced a class of optimum estimating functions which can be regarded as a generalization of quasilikelihood score functions. The “optimality” established by Godambe (1985) within a certain class is for estimating functions and it is based on finite samples. The question that arises naturally is what (if any) asymptotic optimality properties do the estimators and tests based on optimum estimating functions possess. In this paper, we establish, via presenting a convolution theorem, asymptotic optimality of estimators and tests obtained from Godambe optimum estimating functions. It is noted that we do not require the knowledge of the likelihood function.  相似文献   

7.
The Topological Tverberg Theorem claims that any continuous map of a (q-1)(d+1)-simplex to Rd identifies points from q disjoint faces. (This has been proved for affine maps, for d?1, and if q is a prime power, but not yet in general.)The Topological Tverberg Theorem can be restricted to maps of the d-skeleton of the simplex. We further show that it is equivalent to a “Winding Number Conjecture” that concerns only maps of the (d-1)-skeleton of a (q-1)(d+1)-simplex to Rd. “Many Tverberg partitions” arise if and only if there are “many q-winding partitions.”The d=2 case of the Winding Number Conjecture is a problem about drawings of the complete graphs K3q-2 in the plane. We investigate graphs that are minimal with respect to the winding number condition.  相似文献   

8.
Semiparametric models to describe the functional relationship between k groups of observations are broadly applied in statistical analysis, ranging from nonparametric ANOVA to proportional hazard (ph) rate models in survival analysis. In this paper we deal with the empirical assessment of the validity of such a model, which will be denoted as a “structural relationship model”. To this end Hadamard differentiability of a suitable goodness-of-fit measure in the k-sample case is proved. This yields asymptotic limit laws which are applied to construct tests for various semiparametric models, including the Cox ph model. Two types of asymptotics are obtained, first when the hypothesis of the semiparametric model under investigation holds true, and second for the case when a fixed alternative is present. The latter result can be used to validate the presence of a semiparametric model instead of simply checking the null hypothesis “the model holds true”. Finally, various bootstrap approximations are numerically investigated and a data example is analyzed.  相似文献   

9.
10.
In this contribution a variation of Golub/Hansen/O’Leary’s Total Least-Squares (TLS) regularization technique is introduced, based on the Hybrid APproximation Solution (HAPS) within a nonlinear Gauss-Helmert Model. By applying a traditional Lagrange approach to a series of iteratively linearized Gauss-Helmert Models, a new iterative scheme has been found that, in practice, can generate the Tykhonov regularized TLS solution, provided that some care is taken to do the updates properly.The algorithm actually parallels the standard TLS approach as recommended in some of the geodetic literature, but unfortunately all too often in combination with erroneous updates that would still show convergence, although not necessarily to the (unregularized) TLS solution. Here, a key feature is that both standard and regularized TLS solutions result from the same computational framework, unlike the existing algorithms for Tykhonov-type TLS regularization.The new algorithm is then applied to a problem from archeology. There, both the radius and the center-point coordinates of a circle have to be determined, of which only a small part of the arc had been surveyed in-situ, thereby giving rise to an ill-conditioned set of equations. According to the archaeologists involved, this circular arc served as the starting line of a racetrack in the ancient Greek stadium of Corinth, ca. 500 BC. The present study compares previous estimates of the circle parameters with the newly developed “Regularized TLS Solution of Tykhonov type.”  相似文献   

11.
A new version of Montgomery's conjecture (1971) on the estimation of Dirichlet sums is disproved by means of a modification of the idea of “short sums” (due to Bourgain, 1991). We also study the distribution of the values of Dirichlet's “long sums”.  相似文献   

12.
The classical functional delta method (FDM) provides a convenient tool for deriving the asymptotic distribution of statistical functionals from the weak convergence of the respective empirical processes. However, for many interesting functionals depending on the tails of the underlying distribution this FDM cannot be applied since the method typically relies on Hadamard differentiability w.r.t. the uniform sup-norm. In this article, we present a version of the FDM which is suitable also for nonuniform sup-norms, with the outcome that the range of application of the FDM enlarges essentially. On one hand, our FDM, which we shall call the modified FDM, works for functionals that are “differentiable” in a weaker sense than Hadamard differentiability. On the other hand, it requires weak convergence of the empirical process w.r.t. a nonuniform sup-norm. The latter is not problematic since there exist strong respective results on weighted empirical processes obtained by Shorack and Wellner (1986) [25], Shao and Yu (1996) [23], Wu (2008) [32], and others. We illustrate the gain of the modified FDM by deriving the asymptotic distribution of plug-in estimates of popular risk measures that cannot be treated with the classical FDM.  相似文献   

13.
The range over standard deviation of a set of univariate data points is given a natural multivariate extension through the Mahalanobis distance. The problem of finding extrema of this multivariate extension of “range over standard deviation” is investigated. The supremum (maximum) is found using Lagrangian methods and an interval is given for the infinimum. The independence of optimizing the Mahalanobis distance and the multivariate extension of range is demonstrated and connections are explored in several examples using an analogue of the “hat” matrix of linear regression.  相似文献   

14.
Summary We show for an i.i.d. sample that bootstrap estimates consistently the distribution of a linear statistic if and only if the normal approximation with estimated variance works. An asymptotic approach is used where everything may depend onn. The result is extended to the case of independent, but not necessarily identically distributed random variables. Furthermore it is shown that wild bootstrap works under the same conditions as bootstrap.This work has been supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 123 Stochastische Mathematische Modelle  相似文献   

15.
The estimation problem of the parameters in a symmetry model for categorical data has been considered for many authors in the statistical literature (for example, Bowker (1948) [1], Ireland et al. (1969) [2], Quade and Salama (1975) [3], Cressie and Read (1988) [4], Menéndez et al. (2005) [5]) without using uncertain prior information. It is well known that many new and interesting estimators, using uncertain prior information, have been studied by a host of researchers in different statistical models, and many papers have been published on this topic (see Saleh (2006) [9] and references therein). In this paper, we consider the symmetry model of categorical data and we study, for the first time, some new estimators when non-sample information about the symmetry of the probabilities is considered. The decision to use a “restricted” estimator or an “unrestricted” estimator is based on the outcome of a preliminary test, and then a shrinkage technique is used. It is interesting to note that we present a unified study in the sense that we consider not only the maximum likelihood estimator and likelihood ratio test or chi-square test statistic but we consider minimum phi-divergence estimators and phi-divergence test statistics. Families of minimum phi-divergence estimators and phi-divergence test statistics are wide classes of estimators and test statistics that contain as a particular case the maximum likelihood estimator, likelihood ratio test and chi-square test statistic. In an asymptotic set-up, the biases and the risk under the squared loss function for the proposed estimators are derived and compared. A numerical example clarifies the content of the paper.  相似文献   

16.
Newton, in notes that he would rather not have seen published, described a process for solving simultaneous equations that later authors applied specifically to linear equations. This method — which Euler did not recommend, which Legendre called “ordinary,” and which Gauss called “common” — is now named after Gauss: “Gaussian” elimination. Gauss’s name became associated with elimination through the adoption, by professional computers, of a specialized notation that Gauss devised for his own least-squares calculations. The notation allowed elimination to be viewed as a sequence of arithmetic operations that were repeatedly optimized for hand computing and eventually were described by matrices.  相似文献   

17.
Univariate dispersive ordering has been extensively characterized by many authors over the last two decades. However, the multivariate version lacks extensive analysis. In this paper, sufficient and necessary conditions are given to preserve the strong multivariate dispersion order through properties of the corresponding transformation. Finally, these results are applied to the Wishart distribution which can be viewed as “the spread of the dispersion”.  相似文献   

18.
New conservative finite difference schemes for certain classes of nonlinear wave equations are proposed. The key tool there is “discrete variational derivative”, by which discrete conservation property is realized. A similar approach for the target equations was recently proposed by Furihata, but in this paper a different approach is explored, where the target equations are first transformed to the equivalent system representations which are more natural forms to see conservation properties. Applications for the nonlinear Klein–Gordon equation and the so-called “good” Boussinesq equation are presented. Numerical examples reveal the good performance of the new schemes.  相似文献   

19.
Quantile regression for longitudinal data   总被引:18,自引:0,他引:18  
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward a common value can help to modify this inflation effect. A general approach to estimating quantile regression models for longitudinal data is proposed employing ?1 regularization methods. Sparse linear algebra and interior point methods for solving large linear programs are essential computational tools.  相似文献   

20.
In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider nn discrete time observations with step ΔΔ. The asymptotic framework is: nn tends to infinity, Δ=ΔnΔ=Δn tends to zero while nΔnnΔn tends to infinity. First, we use a Fourier approach (“frequency domain”): this allows us to construct an adaptive nonparametric estimator and to provide a bound for the global L2L2-risk. Second, we use a direct approach (“time domain”) which allows us to construct an estimator on a given compact interval. We provide a bound for L2L2-risk restricted to the compact interval. We discuss rates of convergence and give examples and simulation results for processes fitting in our framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号