首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatographic properties of silica-, zirconia- and alumina-based columns with octadecyl-, polyethylene glycol- and pentafluorophenylpropyl-bonded stationary phases were tested. Selectivities of nine columns for LC were characterized using chromatographic methods including Walters, Engelhardt, Tanaka and Galushko hydrophobicity and silanol activity tests, measurements of methylene selectivity in various aqueous-methanol and aqueous-acetonitrile mobile phases and of gradient lipophilic capacity as a measure of the effect of the sample hydrophobicity on gradient-elution separations. A semi-empirical interaction indices model, assuming a predominant role of the solvophobic interactions of test compounds with different polarities, was compared with the linear free energy relationships approach taking into account selective polar interactions. The interaction indices model was applied to both non-polar stationary phases bonded on silica, alumina and zirconia supports, and to the non-modified adsorbents in the normal-phase LC. The retention data of isomeric naphthalene disulfonic acids were used to compare the attractive and repulsive ionic interactions of the columns in purely aqueous mobile phases. The results of the hydrophobicity and polarity tests were consistent, and allowed column characterization and classification. Silanol activity was important with octadecyl silica columns, but was relatively insignificant with bonded polyethylene glycol and pentafluorophenylpropyl phases on silica gel support. Polar interactions with the alumina and zirconia support materials significantly affect the retention.  相似文献   

2.
A review is given of sugar analysis by liquid chromatography using silica columns. Aspects covered are column materials and preparation, chemically and physically modified amine columns, octadecy- and unmodified silica columns; eluent composition and elution mechanisms for the different types of columns used; detection methods, RI and UV detectors, visible lights, fluorescence, moving-wire, polarimetric and mass detection; and sample preparation and origin of samples.  相似文献   

3.
This review provides an overview of twenty years of pioneering work (from 1985 to 2005) of our research group in the preparation and application of enantioselective packing materials for HPLC. After a brief introduction to the rational design of a new chiral stationary phase, a detailed presentation in chronological order of appearance in the literature is given of the currently developed repertoire of chiral stationary phases and their typical applications. Emphasis is placed on the different synthetic strategies exploited to obtain highly efficient, stable, and versatile chiral stationary phases.  相似文献   

4.
The retention of selected dipeptides and tripeptides containing tyrosine was examined. As stationary phase an aminopropylated silica gel loaded with covalently linked tetraphenylporphyrin was used. The effect of metalization of porphyrin with Cu(II) and Zn(II) on retention was investigated. The observed separation is based on a mixed mechanism involving π-π and hydrophobic interactions as well as complex formation between immobilized metal ions and peptides. A satisfactory separation was demonstrated for C-peptide and bovine insulin. The possibility of separation of various insulins was also investigated. Received: 10 August 1998 / Revised: 21 December 1998 / Accepted: 28 December 1998  相似文献   

5.
Some factors influencing the retention of strong-acid anions on ion-exclusion columns were investigated using columns with sulfonate and carboxylate functional groups. The nature of the functional group on the resin, the eluent pH and the eluent ionic strength all significantly affected the retention and separation of these analytes. Retention was observed for all strong-acid anions over the eluent pH range 2.2-5.7 and increased with both decreasing eluent pH and increasing eluent ionic strength. Some separation of strong-acid anions was possible when using a resin with carboxylate functional groups. It has also been demonstrated that strong-acid anions are poor markers of column void volume for ion-exclusion chromatography. A more accurate value was obtained using the neutral polymeric material dextran blue. When using eluents of low ionic strength, poor or fronted peak shapes were observed. A mechanism for these observations is proposed that relates the shape to ionic strength changes across the peak. A system peak was encountered under most experimental conditions. The properties of this peak are discussed and a cause for the system peak postulated.  相似文献   

6.
Stationary phases are the basis of the development and application of high-performance liquid chromatography (HPLC). In this review we focused on the development of silica-based stationary phases, including the synthesis of silica gel and the application of silica in hydrophilic interaction chromatography (HILIC), reversed-phase liquid chromatography (RPLC), chiral separation chromatography, and ion chromatography. New stationary phases, advances in ionic liquid-modified silica, silica-based core-shell materials, and silica-based monolithic columns for HPLC are introduced separately.  相似文献   

7.
A novel type of silica-based sulfonate-modified reversed phase ((-)SO3-HC-C8) has been synthesized; it is based on a newly developed acid stable "hyper-crosslinked" C8 derivatized reversed phase, denoted HC-C8. The (-)SO3-HC-C8 phases containing controlled amounts of sulfonyl groups were made by sulfonating the aromatic hyper-crosslinked network of the HC-C(8) phase at different temperatures. The (-)SO3-HC-C8 phases are only slightly less hydrophobic than the parent HC-C8 phase. The added sulfonyl groups provide a unique strong cation-exchange selectivity to the hydrophobic hyper-crosslinked substrate as indicated by the very large C coefficient as shown through Snyder's hydrophobic subtraction reversed-phase characterization method. This cation-exchange activity clearly distinguishes the sulfonated phase from all other reversed phases as confirmed by the very high values of Snyder's column comparison function F(s). In addition, as was found in previous studies of silica-based and zirconia-based reversed phases, a strong correlation between the cation-exchange interaction and hydrophobic interaction was observed for these sulfonated phases in studies of the retention of cationic solutes. The overall chromatographic selectivity of these (-)SO3-HC-C8 phases is greatly enhanced by its high hydrophobicity through a "hydrophobically assisted" ion-exchange retention process.  相似文献   

8.
The retention indices of methyl and trimethylsilyl esters of octadeca-, eicosa- and tricosa-ynoic fatty acids containing acetylenic bonds were measured on non-polar stationary phase (dimethylsilicone with 5% phenyl groups). An unusually large increase in retention is observed for compounds containing conjugated and methylene interrupted acetylenic bonds. The additional increase in retention index as a result of the presence of one conjugated acetylenic bond is roughly equivalent to the retention increase caused by lengthening of the hydrocarbon chain for one carbon atom. The increase in retention for methylene interrupted bonds constitutes approximately 50% increase for conjugated triple bonds. A further increase in interruption substantially decreases the effect. Based on available literature data and the results of this work, the contributions of conjugated acetylenic and olefinic bonds, and methylene interrupted acetylenic bonds to retention were estimated.  相似文献   

9.
In this study, the separation of biologically active peptides on two zirconia-based phases, polybutadiene (PBD)-ZrO2 and polystyrene (PS)-ZrO2, and a silica-based phase C18 was compared. Basic differences in interactions on both types of phases led to quite different selectivity. The retention characteristics were investigated in detail using a variety of organic modifiers, buffers, and temperatures. These parameters affected retention, separation efficiency, resolution and symmetry of peaks. Separation systems consisting of Discovery PBD-Zr column and mobile phase composed of a mixture of acetonitrile and phosphate buffer, pH 2.0 (45:55, v/v) at 70 degrees C and Discovery PS-Zr with acetonitrile and phosphate buffer, pH 3.5 in the same (v/v) ratio at 40 degrees C were suitable for a good resolution of enkephalin related peptides. Mobile phase composed of acetonitrile and phosphate buffer, pH 5.0 (22:78, v/v) was appropriate for separation of enkephalins on Supelcosil C18 stationary phase.  相似文献   

10.
Inorganic anions were separated on hydrophobic stationary phases such as triacontyl-functionalized silica. Eluent conditions were examined in detail, and iodate, nitrate, iodide, and thiocyanate could be separated by using aqueous solutions. The effect of the eluent concentration on the retention of analyte anions was examined for a wide range of sodium sulfate concentrations of up to 1 M. The retention factor of hydrophobic anions decreased with increasing sodium sulfate concentration in the lower concentration region, while it increased with increasing sodium sulfate concentration in the higher concentration region. The addition of a small amount of an organic substance such as acetonitrile and tetraethylene glycol increased the retention of iodide and thiocyanate, while the addition of alcohols decreased their retention. Operating at lower temperature also increased the retention of analyte anions. It was expected that inorganic anions were retained on the stationary phase via hydrophobic interactions. The retention mechanism was discussed, considering the results obtained.  相似文献   

11.
The synthesis and chromatographic characterization of a highly crosslinked self-assembled monolayer (SAM) stationary phase whose acid and thermal stability were significantly improved relative to a sterically protected octadecylsilane (ODS) stationary phase were recently described [B.C. Trammell, L. Ma, H. Luo, D. Jin, M.A. Hillmyer, P.W. Carr, Anal. Chem. 74 (2002) 4634]. Unfortunately, this highly crosslinked SAM phase is much more silanophilic than a conventional sterically protected octadecyl silane phase. 29Si CP-MAS NMR analysis shows that the high concentration of silanol groups in the self-assembled monolayer causes the increased retention and poor peak shape of basic solutes. In this work dimethyl-chloromethyl-phenylethylchlorosilane (DM-CMPES), a silane with only a single reactive silyl chloride group was tested as an alternative to chloromethyl-phenyethyltrichlorosilane (CMPES) as the basis for forming the starting phase. Most importantly this "conventional" silanization step (i.e., a non-SAM silanization) was followed by a Friedel-Crafts reaction using aluminum chloride as the catalyst and styrene heptamer as the multi-valent crosslinker to form the surface DM-CMPES groups into a network polymer which is fully confined and attached to the surface. An octyl (C8) derivative of the hypercrosslinked (HC) dimethyl-chloromethyl-phenylethyl (DM-CMPES) surface-confined stationary phase was synthesized to demonstrate the potential of a Friedel-Crafts based approach to making high efficiency, acid and thermally stable polymerized phases on silica with selectivity closer to conventional aliphatic phases. The stability of the retention factors of these phases under very aggressive conditions (5%, (v/v) trifluoroacetic acid and 150 degrees C) are compared to that of a sterically protected octadecylsilane (ODS) phase. The comparisons show that the long term stability of highly crosslinked DM-CMPES phases in acid is superior to the conventional phase. The HC-C8 phase is even more stable in acid than the HC-styrene heptamer DM-CMPES phase on which it is based. Additionally, the efficiency and peak shape of several prototypical bases under acidic (0.1% TFA, pH 2.0) elution conditions are discussed. The column dynamics and thermodynamic characteristics of the HC-C8 phase were investigated to demonstrate the chromatographic utility of this ultra-stable phase. Inverse size exclusion chromatography and flow studies of the HC-C8 and the sterically protected C18 stationary phases indicate the absence of pore plugging and quite good (nearly 100,000 plates/m) chromatographic efficiency. Further chromatographic investigations show that the HC-C8 stationary phase behaves as a typical reversed phase material. The HC-C8 stationary phase offers unique chromatographic selectivity for certain classes of analytes compared to both alkyl and phenyl bonded phases.  相似文献   

12.
Free anionic functions present on the surface of reversed-phase packing materials were used for the selective cation-exchange preconcentration and separation of the neurotransmitters choline and acetylcholine from a biological matrix. The cation-exchange behaviour of different reversed-phase packing materials in the neat aqueous mobile phase, the properties of an end-capped column, the dependence of capacity factors and peak shape on the concentration of counter ions, ionic strength, pH and the addition of acetonitrile and optimum conditions for enzymatic conversion of solutes to hydrogen peroxide were studied. The studied reversed-phase columns exhibit better pH stability and longer lifetimes than normal silica-based cation exchangers. Acetylcholine is an effective and sensitive test sample for the measurement of adsorption on silica support. A large sample volume was injected onto a precolumn inserted instead of an injection valve and after injection the solutes were focused and separated on an analytical column with a mobile phase containing tetramethylammonium perchlorate as the counter ion.  相似文献   

13.
The retention behavior of large polycyclic aromatic hydrocarbons (LPAHs) (> or = 7 rings) on newly developed metalloplotoporphyrin (MProP)-silica stationary phases is examined and the results are compared to previously reported data for retention of the same solutes on commercially available phases. HPLC columns packed with FeProP-silica are shown to exhibit unique shape selectivity for LPAH retention, with the planar LPAHs always retained much longer than corresponding non-planar solutes. Solute planarity, length to breadth ratio (L/B value), and number of carbon atoms within the LPAHs are all demonstrated to contribute to the retention sequence observed. Further, the retention of LPAH solutes on FeProP-silica phases is shown to be more predictable than on other reversed-phase columns, with the elution sequence constant regardless of the mobile phase composition. Due to the extremely high planar selectivity of FeProP-silicas with respect to LPAH retention, it is envisioned that columns packed with these phases could be used in conjunction with existing commercial columns to devise Inethods for more efficient separation of complex mixtures of LPAHs in environmental and other samples.  相似文献   

14.
The retention behavior of large polycyclic aromatic hydrocarbons (LPAHs) (≥ 7 rings) on newly developed metalloprotoporphyrin (MProP)-silica stationary phases is examined and the results are compared to previously reported data for retention of the same solutes on commercially available phases. HPLC columns packed with FeProP-silica are shown to exhibit unique shape selectivity for LPAH retention, with the planar LPAHs always retained much longer than corresponding non-planar solutes. Solute planarity, length to breadth ratio (L/B value), and number of carbon atoms within the LPAHs are all demonstrated to contribute to the retention sequence observed. Further, the retention of LPAH solutes on FeProP-silica phases is shown to be more predictable than on other reversed-phase columns, with the elution sequence constant regardless of the mobile phase composition. Due to the extremely high planar selectivity of FeProP-silicas with respect to LPAH retention, it is envisioned that columns packed with these phases could be used in conjunction with existing commercial columns to devise methods for more efficient separation of complex mixtures of LPAHs in environmental and other samples.  相似文献   

15.
More and more polar stationary phases have become available for the separation of small polar compounds in the past decade as hydrophilic interaction chromatography (HILIC) continues to find applications in new fields (e.g., metabolomics and proteomics). Bare silica phases remain popular, especially in the bio-analytical area. A wide range of functional groups (e.g., amino, amide, diol, sulfobetaine, and triazole) have been employed as polar stationary phases for HILIC separation. This review provides a survey of the popular stationary phases commercially available and discusses the retention and selectivity characteristics of the polar stationary phases in HILIC. The purpose of the review is not to provide a comprehensive overview of literature reports, but rather focuses on findings that demonstrate retention and selectivity of the polar stationary phases in HILIC.  相似文献   

16.
This study describes the use of stationary phases with polar functionality suitable for the chemical analysis of carbamates pesticides and comparing with conventional alkyl C8 and C18 phases. The emphasis of this study was to compare the selectivity and retention of the pesticides on different stationary phases, bonded onto 1.7 μm partially porous silica particles under isocratic separation condition. Four stationary phases including: phenylaminopropyl (PAP) phase, bidentate propylurea-C18 (BPUC18), C8 and C18, were successfully bonded on the partially porous silica spheres as evidenced by 29Si and 13C solid-state NMR analysis. The phenylaminopropyl phase exhibited smaller retentivity and enhanced selectivity compared to the alkyl C8 phase; the analysis time to run separation of the six carbamate pesticides (i.e., methomyl, propoxur, carbofuran, carbaryl, isoprocarb, and promecarb) on the PAP phase was threefold faster than alkyl C8 phase. In a similar manner, the BPUC18 phase shows similar selectivity to that of the PAP phase, but with longer retentivity; although the BPUC18 phase is characterized with a lesser degree of retentivity for the carbamate pesticides than the conventional alkyl C18 phase. We propose that π–π and weak polar interactions between the carbamate pesticides and the PAP phase dominates the separation mechanism and providing a superior selectivity; faster separation time was also achieved as a result of smaller retentivity. Whereas the C8 and C18 bonded phases exhibits only hydrophobic interactions with the pesticides, leading to larger retentivity. The BPUC18 phase is shown to interact via polar–polar interactions in addition to hydrophobic interactions with the pesticides, providing similar selectivity with the PAP phase but with larger retentivity.  相似文献   

17.
The separation and determination of hydrophilic basic compounds are of great importance in many fields including clinical and biological research, pharmaceutical development and forensic analysis. However, the most widely used analytical separation technique in these disciplines, reversed-phase liquid chromatography (RPLC), usually does not provide sufficient retention for several important classes of highly hydrophilic basic compounds including catecholamines, many drug metabolites and many drugs of abuse. Commonly eluents having little or no organic modifier and/or strong ion pairing agents must be used to achieve sufficient retention and separation. Use of highly aqueous eluents can lead to column failure by dewetting, resulting in poor retention, low selectivity and irreproducibility and slow recovery of performance. The use of a strong ion pairing agent to increase retention renders the separation incompatible with mass spectrometric detection and complicates preparative separations. This paper describes the successful applications of a novel type of silica-based, hyper-crosslinked, sulfonate-modified reversed stationary phase, denoted as (-)SO(3)-HC-C(8)-L, for the separation of highly hydrophilic cations and related compounds by a hydrophobically assisted cation-exchange mechanism. Compared to conventional reversed-phases, the (-)SO(3)-HC-C(8)-L phase showed significantly improved retention and separation selectivity for hydrophilic amines. Concurrently, due to the presence of both cation-exchange and reversed-phase retention mechanisms and the high acid stability of hyper-crosslinked phases, the separation can be optimized by changing the type or concentration of ionic additive or organic modifier, and by varying the column temperature. In addition, gradients generated by programming the concentration of either the ionic additive or the organic modifier can be applied to reduce the analysis time without compromising resolution. Furthermore, remarkably different chromatographic selectivities, especially toward cationic solutes, were observed upon comparing the (-)SO(3)-HC-C(8)-L phase with conventional reversed-phases. We believe that the combination of these two types of stationary phases will be very useful in two-dimensional liquid chromatography.  相似文献   

18.
The separation of C60 and C70 fullerenes on four different polysiloxane stationary phases was examined. It was determined that polar solvents can be used as mobile phases effectively for the separation of fullerene molecules. Unlike previously published work, a polymeric octadecyl siloxane (ODS) stationary phase provided higher separation factors for C70/C60 than did monomeric ODS stationary phases or phenyl substituted stationary phases. For example, for a methanol-diethyl ether (50:50, v/v) mobile phase and C60, k' approximately 5.0 separation factors, alpha = 3.3, were achieved with polymeric ODS compared to alpha = 2.2, with a monomeric ODS stationary phase. A linear solvation energy relationship (LSER) was used to model the importance of solvent interactions and stationary phase interaction to solute retention.  相似文献   

19.
The development of methods for the separation of enantiomers has attracted great interest in the past 20 years, since it became evident that the potential biological or pharmacological applications are mostly restricted to one of the enantiomers. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of high-performance liquid chromatography (HPLC), thin-layer chromatography and electrophoresis. The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these macrocyclic glycopeptide antibiotics and, through their application, endeavors to demonstrate the mechanism of separation on macrocyclic glycopeptides. The sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

20.
Several C18 stationary phases were found to behave non-ideally when insulins and proinsulins were eluted with shallow acetonitrile gradients in 0.1% trifluoroacetic acid, resulting in poor peak shapes or no elution at all. With triethylammonium phosphate or ammonium sulphate as buffer components, the insulins and proinsulins were eluted with excellent peak shapes, presumably owing to better masking of residual silanol groups on the stationary phases. Similar use of trifluoroacetic acid-acetonitrile gradients on the less hydrophobic C4 or C3 stationary phases resulted in excellent peak shapes. The difficult separation of rat proinsulin I and II, which are important for the study of rat insulin biosynthesis, was only achieved with two different stationary-mobile phase combinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号