首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-layer materials were devised in order to improve the absorbing properties of electromagnetic wave absorbing plates. The double-layer wave absorbing materials are composed of a matching layer and an absorption layer. The matching layer is the surface layer through which most of the incident waves can enter, and the absorption layer beneath it plays an important role in incident wave attenuation. The total thickness of the double layer is the sum of the thicknesses of these two layers. Carbonyl iron (CI) and carbon black (CB) were used as absorbents in the matching and absorption layers, respectively. The structures of the CI and CB particles were analyzed using scanning electron microscopy and transmission electron microscopy; the dielectric properties and absorption mechanisms were also studied. In the testing frequency range 2-18 GHz, the results show that the double-layer absorbers have two absorption peaks, and the positions and values of these peaks change with the content level of the absorbents. When the mass fraction of CI in the matching layer is 50% and the total thickness of the absorber is 4 mm, the effective absorption band (below −8 dB) reaches 5.5, 5.8, and 6.5 GHz. Where the mass fraction of CB is 50% or 60% and the mass fraction of CI is 70%, the bandwidth with reflection loss below −4 dB is larger than 10 GHz.  相似文献   

2.
In this paper, an ultra-small cavity resonator (USCR) loaded with left-handed metamaterial (LHM) and right-handed material (RHM) layers is designed using a novel miniaturization approach. The resonant behavior is successfully observed, and the dimensions of the USCR are only 4.58 mm × 5.08 mm × 2.29 mm at the dominant resonance frequency of 10.3 GHz. Through the field distribution calculation, we confirmed that the miniaturization of the USCR arises from the left-handed property of the LHM. For a practical application, a miniaturized filter with overall length of 10.19 mm consisting of two USCRs is designed to confirm the frequency-selective characteristics. Results show that the filter has some narrow pass bands, which correspond to the resonant modes of the electromagnetic resonance in the USCR, and the insertion loss at the dominant resonance frequency of the USCR is as low as 0.65 dB. Moreover, the filtering characteristics of the filter can be controlled by changing its feeding loop positions in the USCR. PACS 78.70.Gq; 81.05.Zx; 84.40.Ba  相似文献   

3.
熊益军  王岩  王强  王春齐  黄小忠  张芬  周丁 《物理学报》2018,67(8):84202-084202
设计了一种三层宽频吸波超材料,其表层和中间层为单元尺寸不同的周期阵列结构,底层为吸波平板结构,优化后的总厚度仅为4.7 mm,并采用三维(3D)打印技术成功制备了该吸波超材料.吸波体反射率测试结果表明,在电磁波垂直入射条件下,宽频吸收峰分别出现在5.3和14.1 GHz,两峰叠加使得其在4-18 GHz频率范围内反射损耗均小于-10 dB.采用S参数反演法计算了每一层的等效电磁参数,并利用多层结构反射率公式推导得出该模型的理论反射率,理论计算结果与实测结果基本一致.通过研究能量损耗、电场分布和磁场分布揭示了吸波机理,分析表明该吸波体的宽频吸收效果源于三层结构产生的吸收带宽叠加.本文提出的吸波超材料具有良好的宽频吸收效果,尤其在低频范围吸波性能较佳,结合3D打印快速成型技术,可获得结构精细的三层吸波超材料,具有重要的实际应用价值和广阔的应用前景.  相似文献   

4.
基于等效介质原理的宽角超材料吸波体的理论分析   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,很少有文章就如何实现宽角度吸波材料进行详细的理论分析和设计指导,设计宽角度吸波材料仍然是一件很困难的事情.本文基于等效介质理论对带有反射地板的单层介质超材料吸波体进行较为详细的理论分析.从基础电磁理论出发,推导TE波(横电波,电场方向与入射面垂直的平面电磁波)和TM波(横磁波,磁场方向与入射面垂直的平面电磁波)照射下吸波体的反射系数,分析实现宽角度吸波效果所需的等效电磁参数,为宽角度超材料吸波体的设计提供了理论基础.此外,论文还理论分析了实现宽带宽角吸波等效电磁参数所要满足的条件,并做了计算检验.结果表明,当介质等效电磁参数按照特殊曲线随频率发生变化时,理论上能实现宽带宽角的吸波效果.  相似文献   

5.
To solve more and more serious electromagnetic interference problem, one thin microwave absorbing sheet employing carbonyl-iron powder (CIP) and chlorinated polyethylene (CPE) was prepared. The pattern, static magnetic properties and phase of CIP were characterized by scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD), respectively. The electromagnetic parameters of CIP were measured in the frequency range of 2-18 GHz, and the electromagnetic loss mechanisms of the powder were discussed. The microwave absorption properties of composite sheets with different thicknesses and CIP ratios in matrix were investigated by measuring reflection loss (RL) in 2-18 GHz frequency range using the arch method. The results showed that appropriate CIP content and thickness could greatly improve microwave absorption properties in lower frequency range. For the sample with the weight ratio (CIP:CPE) of 16:1 and 1.5 mm thickness, the bandwidth (RL below −10 dB) achieved 1.1 GHz (2-3.1 GHz), and the minimum reflection loss value was obtained −13.2 dB at 2.2 GHz. This suggested that CIP/CPE composites could be applied as thin microwave absorbers in S-band (2-4 GHz).  相似文献   

6.
党可征  时家明  李志刚  孟祥豪  王启超 《物理学报》2015,64(11):114101-114101
为进一步提高传统Salisbury屏的吸波性能, 本文提出了利用高阻抗表面在特定频率同相反射的特性, 替代原有结构中的金属平板设计多频带Salisbury屏的方法. 通过分析不同频率电磁波经高阻抗表面反射后空间电磁场的场强分布, 说明可以通过共用Salisbury屏的损耗层, 在高阻抗表面同相反射的特征频率附近引入新的吸收带. 以不同尺寸方形周期结构的单频和双频高阻抗表面为例, 从仿真和实验两个方面验证了多频带Salisbury屏设计的可行性, 且实验和仿真结果十分符合. 结果表明, 多频带Salisbury屏基本保留了原有的吸波性能, 同时又引入了新的吸收峰, 吸收峰的位置和数量与高阻抗表面同相反射的频带位置和数目有关. 与传统的Salisbury屏相比, 在材料增加厚度不足1 mm 的情况下, 多频带Salisbury屏的设计使反射率小于-10 dB的吸波带宽由8.5 GHz增加到10.1 GHz, 且实现了向长波方向的拓展, 最低频率由7.5 GHz拓展到5.98 GHz.  相似文献   

7.
Microwave absorbing materials filled with BaTiO3 and carbonyl iron (CI) particles with various weight fractions (BaTiO3/CI particles=100/0 to 0/100) are investigated. The dielectric and magnetic properties of the absorbers can be tuned by changing the weight ratio of BaTiO3/CI particles in the frequency range of 2-18 GHz. Numerical simulations are also performed to design a single-layer and double-layer absorber. The minimum reflection loss of the composite filled with 20 wt% BaTiO3 and 60 wt% CI particles at 2.0 mm thickness can be reached to −42 dB at 4.1 GHz. With the weight ratio of CI particles in the composite increased, the microwave absorption peak shifted to the lower frequency region. By using a double-layer absorber structure, the microwave absorption performance of the absorber is enhanced. The result shows that the total thickness of the absorber can be reduced below 1.4 mm by using a matching layer filled with 50 wt% BaTiO3, and an absorption layer filled with 60 wt% BaTiO3 and 20 wt% CI particles, whereas the reflection loss below −10 dB can be obtained in the frequency range of 10.8-14.8 GHz and the minimum reflection loss of −59 dB can be obtained at 12.5 GHz.  相似文献   

8.
李宇涵  邓联文  罗衡  贺龙辉  贺君  徐运超  黄生祥 《物理学报》2019,68(9):95201-095201
针对超材料吸波频带窄的问题,采用金属螺旋环超表面与碳纤维吸波材料相复合的方式,设计了宽频高性能复合吸波体.研究发现,在碳纤维吸波材料中引入双层螺旋环超表面能显著增强吸收峰值和吸波带宽,且适当增加螺旋环初始线长和吸收层厚度有利于提高复合吸波体的吸波性能, 9.2—18.0 GHz频段的反射损耗均优于–10 dB (带宽达8.8 GHz),吸收峰值达–14.4 dB.利用S参数计算得到螺旋环-碳纤维复合吸波体的等效电磁参数和特征阻抗呈现多频点谐振特性,通过构建双层螺旋环超表面等效电路模型,定量计算了复合吸波体的电磁谐振频点,发现由等效电路模型获得的谐振频点计算值与仿真值基本相符,说明该复合吸波体多频点电磁谐振是宽频电磁损耗的主要机制.  相似文献   

9.
Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.  相似文献   

10.
周永江  庞永强  程海峰 《中国物理 B》2013,22(1):15201-015201
In this paper, we present an efficient method to obtain absorbers with broadened operating frequency bands. They are accomplished by using the conventional magnetic absorbing materials (MAMs) in the forms of array and mesh structures, which are similar to those in the case of frequency slective surface. The proposed approach is verified not only by simulations but also by experimental results under the normal incidence at microwave frequencies. Moreover, the wideband absorber is lighter than the conventional magnetic absorber. These results indicate that our proposed absorbing structures can be used for designing good electromagnetic absorbers.  相似文献   

11.
In this paper, we present an efficient method to obtain absorbers with broadened operating frequency bands. They are accomplished by using conventional magnetic absorbing materials (MAMs) in the forms of array and mesh structures, which are similar to those in the case of a frequency selective surface. The proposed approach is verified not only by simulations but also by experimental results under the normal incidence at microwave frequencies. Moreover, the wideband absorber is lighter than the conventional magnetic absorber. These results indicate that our proposed absorbing structures can be used for designing good electromagnetic absorbers.  相似文献   

12.
Microwave absorbing materials composed of ordered mesoporous carbon (OMC) as absorbent and paraffin as matrix were prepared, and their electromagnetic and microwave absorbing properties could be tuned by changing the weight fraction of OMC at 2–18 GHz. The minimum reflection loss (RL) value reached ?9.3 dB at 8.0 GHz and the absorption range with RL lower than ?5 dB was obtained at 5.8–14.4 GHz for a single-layer absorber filled with 1.98 wt.% OMC at 3.0 mm. If a double-layer structure was adopted, the total thickness of the absorber could be reduced below 2.0 mm and the effective absorption range (RL<?10 dB) could be obtained at 8.9–14.3 GHz with a minimal RL of ?28.5 dB at 10.6 GHz. This work demonstrated that dielectric composites could be used as excellent absorbers by adopting reasonable multilayer structures.  相似文献   

13.
We have developed a 150 GHz band corrugated feed horn. These corrugated feed horns have been established by a new machining method, which involves digging corrugations through a metal material. We were able to realize E plane and H plane symmetry, low side lobe level, and low cross-polarization level. Measured co-polarization beam patterns above − 35 dB were consistent with the simulated patterns within a designed frequency range. The peak levels of cross-polarization beam patterns were less than − 30 dB. And, the performances were uniform in several horns. In the present paper, we describe the corrugated horn produced by this methods.  相似文献   

14.
This work concentrated on an ELS (electric line source) radiating parallel to a lossless metamaterial covered infinitely long conductor cylinder. First, the exact analytical solution of the electromagnetic model is derived. Second, the numerical results based on the solution are given. Under different geometric and electromagnetic parameters, the patterns of the near field are obtained; the directivity and normalized radiation resistance are presented to discuss the properties of the far field. Because of the negative refraction of the metamaterial, it can be seen that there is a distinct “focus” in the metamaterial layer from the near field pattern, which does not exist in conventional material layer. The presented electromagnetic model is compared with the former, simpler model through the directivity and its validity is proven. PACS 78.70.Gq; 81.05.Zx; 84.40.Ba  相似文献   

15.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

16.
The experimental study of absorption in silicon in infrared and visible spectral ranges, where the photon energy is less or more than the bandgap width, is performed by means of the ultrafast interferometry technique. The exactly solvable model in the electromagnetic of heterogeneous lossy plasma layer was developed. The density of carriers, their frequency of collisions, absorbing depth of the probing waves, real and imaginary parts of dielectric function of nonuniform layer and their spatial gradients are determined from the reflectance data by means of this model subject to the pump fluence. The heterogeneity-induced effects are visualized due to comparison of obtained plasma parameters with those calculated in the framework of homogeneous plasma model It is shown that in the intensity range near thresholds of melting and ablation the absorption, occurring in both cases mainly within a thin (∼10 nm) absorbing layer (similarly to metals), is due to free carrier intraband absorption.  相似文献   

17.
Pine litter flame is a weakly ionised medium. Electron-neutral collisions are a dominant form of particle interaction in the flame. Assuming flame electrons to be in thermal equilibrium with neutrals and average electron-neutral collision frequency to be much higher than the plasma frequency, the propagation of microwaves through the flame is predicted to suffer signal intensity loss. A controlled fire burner was constructed where various natural vegetation species could be used as fuel. The burner was equipped with thermocouples and used as a cavity for microwaves with a laboratory quality network analyzer to measure wave attenuation. Electron density and collision frequency were then calculated from the measured attenuation. The parameters are important for numerical prediction of electromagnetic wave propagation in wildfire environments. A controlled pine litter fire with a maximum flame temperature of 1080 K was set in the burner and microwaves (8–10.5 GHz) were caused to propagate through the flame. A microwave signal loss of 1.6–5.8 dB was measured within the frequency range. Based on the measured attenuation, electron density and electron-neutral collision frequency in pine fire were calculated to range from 0.51–1.35 × 1016 m−3 and 3.43–5.97 × 1010 s−1 respectively.  相似文献   

18.
徐永顺  别少伟  江建军  徐海兵  万东  周杰 《物理学报》2014,63(20):205202-205202
设计和制备了含螺旋单元频率选择表面吸波片的三层复合吸波体,上层和下层均为磁性吸波片,中间层为带缺口的螺旋单元频率选择表面.复合吸波体在总厚度分别为1.4,1.7和2.0 mm时,其反射率在-10d B以下的频带宽度分别达到了9.29,6.69和7.11 GHz,与不含有频率选择表面的吸波体相比较(其他参数相同),-10d B以下反射率带宽分别提高了159.5%,69.3%和129.4%,复合吸波体在总厚度低于吸波体时,也取得了更好的反射效果.带缺口圆螺旋单元的频率选择表面嵌入吸波体中,引入了额外的吸收频带,拓宽了吸波体的反射率频带宽度.仿真分析表明嵌入频率选择表面能够改善吸波体的阻抗匹配性,进而影响其反射率.  相似文献   

19.
In order to increase the electromagnetic parameters and improve the microwave absorbing properties in the range of 1–4 GHz, gas atomized Fe-50 wt%Ni alloys with spherical form were processed in a planetary mill. The morphology, phase composition and saturation magnetization of the FeNi alloy particles were investigated by means of scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer. The complex permittivity, complex permeability and reflection loss of the microwave absorbing material made from Ethylene–Propylene–Diene Monomer rubber, and the Fe-50 wt%Ni alloys were also studied using vector network analyzer and transmission line theory. The results show that the shape of the atomized Fe-50 wt%Ni powders can be modified by mechanical milling. The flaky Fe-50 wt% Ni particles were prepared, and the aspect ratio increases with increasing the milling time from 10 to 30 h. Mechanical milling does not change the phase compositions of the FeNi alloys but decreases the peak intensity and broadens the peak width. The saturation magnetization decreases and the coercivity increases as the milling time increases. The electromagnetic parameters and microwave absorbing properties are enhanced with the increase of the aspect ratio. The rubber absorbers filled with flaky Fe-50 wt%Ni powders milled for 30 h exhibit the low reflection loss in the 1–4 GHz frequency range.  相似文献   

20.
A low-noise, ultra-short linear-cavity distributed feedback fiber laser (DFB-FL) with extremely narrow linewidth is presented. The FL has a total length of 17 mm, which is, to our knowledge, the shortest DFB-FL being reported. It has a measured linewidth of merely 250 Hz without active stabilization. It has a polarization beat frequency of 101 MHz, which is several times lower than that of most FLs. The relaxation oscillation frequency and relative peak are 110 kHz and −76.5 dB/Hz, respectively. The FL exhibited low-noise characteristics, with an intensity noise of −107 dB/Hz at 1 MHz. Due to low dopant concentration of the EDF and low splice loss with ordinary single-mode fibers, the net insertion loss amounts to only 0.45 dB. Such low pump power loss greatly enhances the capability of multiplexing a large number of FL sensors. Thus, these ultra-short DFB-FLs open up new opportunities for the development of compact-sized point sensor array systems for large-scale high sensitivity sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号