首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dynamic interfacial tension values obtained by drop volume tensiometry will be affected under certain experimental conditions by the formation of a neck between the drop and the capillary tip. This phenomenon must be accounted for to obtain accurate values of interfacial tension. In this work, neck formation for a water–mineral oil system is studied under conditions where hydrodynamic effects can be neglected. A model originally developed for the determination of the surface tension of a suspended drop is modified for application to dynamic interfacial tensions of surfactant-containing liquids. The model relates apparent values of interfacial tension calculated from drops possessing necks to actual values. Experiments with Span 80 (sorbitan monooleate) and sodium dodecyl sulfate (SDS) surfactants in a mineral oil–water system are used to test the validity of the developed model. For the small tip diameter used, good agreement is obtained for Span 80 up to the critical micelle concentration, and for low concentrations of SDS, when the surfactant adsorption is diffusion-limited. In both cases, the neck diameter of the growing drop can be considered constant over the range of dynamic interfacial tensions tested.  相似文献   

2.
A novel, growing drop technique is described for measuring dynamic interfacial tension due to sorption of surface-active solutes. The proposed method relates the instantaneous pressure and size of expanding liquid drops to the interfacial tension and is useful for measuring both liquid/gas and liquid/liquid tensions over a wide range of time scales, currently from 10 ms to several hours. Growing drop measurements on surfactant-free water/ air and water/octanol interfaces yield constant tensions equal to their known literature values. For surfactant-laden, liquid drops, the growing drop technique captures the actual transient tension evolution of a single interface, rather than interval times as with the classic maximum-drop-pressure and drop-volume tension measurements. Dynamic tensions measured for 0.25 mM aqueous 1-decanol solution/air and 0.02 kg/m3 aqueous Triton X-100 solution/dodecane interfaces show nonmonotonic behavior, indicating slow surfactant transport relative to the imposed rates of interfacial dilatation. The dynamic tension of a purified and fresh 6 mM aqueous sodium dodecyl sulfate (SDS) solution/air interface shows only a monotonic decrease, indicating rapid surfactant transport relative to the imposed rates of dilatation. Conversely, an aged SDS solution, naturally containing trace dodecanol impurities, exhibits dynamic tensions which reflect a superposition of the rapidly equilibrating SDS and the slowly adsorbing dodecanol.  相似文献   

3.
Processes that inject gases such as carbon dioxide and natural gas have long been and still continue to be used for recovering crude oil from petroleum reservoirs. It is well known that the interfacial tension between the injected gas and the crude oil has a major influence on the efficiency of displacement of oil by gas. When the injected gas becomes miscible with the crude oil, which means that there is no interface between the injected and displaced phases or the interfacial tension between them is zero, the oil is displaced with maximum efficiency, resulting in high recoveries. This paper presents experimental measurements of interfacial tension between crude oil and natural gases (using a computerized drop shape analysis technique) as a function of pressure and gas composition at the temperature of the reservoir from which the crude oil was obtained. The point of zero interfacial tension was then identified from these measurements by extrapolation of data to determine minimum miscibility pressure (MMP) and minimum miscibility composition (MMC). The gas-oil miscibility conditions thus obtained from interfacial tension measurements have been compared with the more conventional techniques using slim-tube tests and rising-bubble apparatus as well as predictive correlations and visual observations. The miscibility pressures obtained from the new VIT technique were 3-5% higher than those from visual observations and agreed well with the slim-tube results as well as with the correlations at enrichment levels greater than 30 mol% C2+ in the injected gas stream. The rising bubble apparatus yielded significantly higher MMPs. This study demonstrates that the VIT technique is rapid, reproducible, and quantitative, in addition to providing visual evidence of gas-oil miscibility.  相似文献   

4.
Asphaltenes constitute high molecular weight constituents of crude oils that are insoluble in n-heptane and soluble in toluene. They contribute to the stabilization of the water-in-oil emulsions formed during crude oil recovery and hinder drop-drop coalescence. As a result, asphaltenes unfavorably impact water-oil separation processes and consequently oil production rates. In view of this there is a need to better understand the physicochemical effects of asphaltenes at water-oil interfaces. This study elucidates aspects of these effects based on new data on the interfacial tension in such systems from pendant drop experiments, supported by results from nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) studies. The pendant drop experiments using different asphaltene concentrations (mass fractions) and solvent viscosities indicate that the interfacial tension reduction kinetics at short times are controlled by bulk diffusion of the fraction of asphaltenes present as monomer. At low mass fractions much of the asphaltenes appear to be present as monomers, but at mass fractions greater than about 80 ppm they appear to aggregate into larger structures, a finding consistent with the NMR and DLS results. At longer times interfacial tension reduction kinetics are slower and no longer diffusion controlled. To investigate the controlling mechanisms at this later stage the pendant drop experiment was made to function in a fashion similar to a Langmuir trough with interfacial tension being measured during expansion of a droplet aged in various conditions. The interfacial tension was observed to depend on surface coverage and not on time. All observations indicate the later stage transition is to an adsorption barrier-controlled regime rather than to a conformational relaxation regime.  相似文献   

5.
In this work contact angles formed by drops of polystyrene (PS) on a surface of liquid crystalline polymer (LCP) Vectra A910 were measured as a function of temperature for temperatures ranging from 180 to 230°C. The values were used together with the surface tensions of both polymers to evaluate the interfacial tension between PS and the LCP. In order to validate the method used to evaluate this interfacial tension, the interfacial tension between polypropylene (PP) and PS was evaluated using values of contact angles formed by a drop of PP on PS and the values of surface tension of both polymers in the molten state. The values of interfacial tension between PP and PS corroborated well the values obtained using the pendant drop method. The values of interfacial tension between PS and the LCP were shown to decrease linearly with temperature.  相似文献   

6.
采用动态激光光散射及环境扫描电镜研究了羧甲基纤维素系列高分子表面活性剂与大庆原油形成超低界面张力的机理.结果表明,CMC系列高分子表面活性剂具有与低分子量表面活性剂相比拟的表/界面活性,其水溶液的表面张力可达2835mN/m,界面张力达到10-110mN/m.碱的加入可显著降低高分子表面活性剂与原油的界面张力,在适当条件下界面张力达到超低值(10-3mN/m),可望作为三次采油的驱油剂.等效烷烃模型研究表明,用碱与原油酸性组分的作用来解释碱能使界面张力下降至超低值的传统观点是不完善的,加入碱能使高分子表面活性剂胶束解缔,胶束数量增多,胶束粒径减小,单分子自由链增加,有利于高分子表面活性剂向界面迁移和排布,这是高分子表面活性剂和碱复配体系与原油界面张力下降至超低值的主要原因.  相似文献   

7.
A new method combining axisymmetric drop shape analysis (ADSA) and a captive bubble (CB) is proposed to study the effect of surfactant on interfacial gas transfer. In this method, gas transfer from a static CB to the surrounding quiescent liquid is continuously recorded for a short period (i.e., 5 min). By photographical analysis, ADSA-CB is capable of yielding detailed information pertinent to the surface tension and geometry of the CB, e.g., bubble area, volume, curvature at the apex, and the contact radius and height of the bubble. A steady-state mass transfer model is established to evaluate the mass transfer coefficient on the basis of the output of ADSA-CB. In this way, we are able to develop a working prototype capable of simultaneously measuring dynamic surface tension and interfacial gas transfer. Other advantages of this method are that it allows for the study of very low surface tensions (<5 mJ/m2) and does not require equilibrium of gas transfer. Consequently, reproducible experimental results can be obtained in a relatively short time. As a demonstration, this method was used to study the effect of lung surfactant on oxygen transfer. It was found that the adsorbed lung surfactant film shows a retardation effect on oxygen transfer, similar to the behavior of a pure DPPC film. However, this retardation effect at low surface tensions is less than that of a pure DPPC film.  相似文献   

8.
A molecularly detailed self-consistent field (SCF) approach is applied to describe a sessile hydrocarbon droplet placed at the air-water interface. Predictions of the contact angle for macroscopic droplets follow from using Neumann's equation, wherein the macroscopic interfacial tensions are computed from one-gradient calculations for flat interfaces. A two-gradient cylindrical coordinate system with mirror-like boundary conditions is used to analyse the three dimensional shape of the nano-scale oil droplet at the air-water interface. These small droplets have a finite value of the Laplace pressure and concomitant line tension. It has been calculated that the oil-water and oil-vapour interfacial tensions are curvature dependent and increase slightly with increasing interfacial curvature. In contrast, the line tension tends to decrease with curvature. In all cases there is only a weak influence of the line tension on the droplet shape. We therefore argue that the nano-scale droplets, which are described in the SCF approach, are representative for macroscopic droplets and that the method can be used to efficiently generate accurate information on the spreading of oil droplets at the air-water interface in molecularly more complex situations. As an example, non-ionic surfactants have been included in the system to illustrate how a molecularly more complex situation will change the wetting properties of the sessile drop. This short forecast is aimed to outline and to stress the potential of the method.  相似文献   

9.
The influence of molecular weight asymmetry across an interface on the transient behavior of the interfacial tension is investigated for two different polymer combinations, polybutadiene (PBD)/polydimethylsiloxane (PDMS) and polybutene (PB)/PDMS. This choice ensures a minor diffuse interface using the first combination and a very diffuse interface in the latter case. Measurements of the interfacial tension as a function of time are carried out using a pendent/sessile drop apparatus at different temperatures ranging from 0 degrees C to 80 degrees C. Variations in the transient interfacial tension are attributed to diffusion of the lower molecular weight components from one phase into the other and the most pronounced changes are measured for the most diffusive systems (low molecular weight and high polydispersity) when diffusion goes from the drop into the matrix. By reversing the phases, only minor changes in the transient interfacial tension are measured. This is due to a fast saturation of the drop-phase since the drop volume is much smaller than that of the continuous phase. In all cases investigated, after a sufficient time a steady value of the interfacial tension is reached. In order to estimate the characteristic diffusion times of the migrating species, a discrete solution of the diffusion equation and a kinetic model from literature are applied. Results obtained are in line with the experimental observations. The importance of a changing interfacial tension on morphology development is studied on dilute (1%) blends, using two in situ techniques: small angle light scattering (SALS) and optical microscopy (OM). The SALS patterns yield the time evolution of the drop size, which is subsequently compared with the morphology following from OM. Depending on the diffusivity of the system, the morphology development is dominated by either diffusion or coalescence. Existing sharp-interface drainage models indeed do not apply for the diffuse blends and an improved quantitative estimation of the value of the critical film thickness is needed.  相似文献   

10.
Widely used traditional Parachor model fails to provide reliable interfacial tension predictions in multicomponent hydrocarbon systems due to the inability of this model to account for mass transfer effects between the fluid phases. In this paper, we therefore proposed a new mass transfer enhanced mechanistic Parachor model to predict interfacial tension and to identify the governing mass transfer mechanism responsible for attaining the thermodynamic fluid phase equilibria in multicomponent hydrocarbon systems. The proposed model has been evaluated against experimental data for two gas-oil systems of Rainbow Keg River and Terra Nova reservoirs. The results from the proposed model indicated good IFT predictions and that the vaporization of light hydrocarbon components from crude oil to gas phase is the governing mass transfer mechanism for the attainment of fluid phase equilibria in both the gas-oil systems used. A multiple linear regression model has also been developed for a priori prediction of exponent in the mechanistic model by using only the reservoir fluid compositions, without the need for experimental measurements. The dynamic nature of interfacial tensions observed in the experiments justifies the use of diffusivities in the mechanistic model, thus enabling the proposed model predictions to determine dynamic gas-oil miscibility conditions in multicomponent hydrocarbon systems.  相似文献   

11.
Gemini阴离子表面活性剂水溶液的界面活性   总被引:7,自引:0,他引:7  
Gemini阴离子表面活性剂水溶液的界面活性;Gemini阴离子表面活性剂;表面张力;CMC;C20;界面张力  相似文献   

12.
Summary The interfacial tensions of a series of poly(ethylene oxides) (PEO) and poly(propylene oxides) (PPO) have been measured using a pendant drop technique. A drop of PEO was formed under the PPO, in a thermostatted cell usually at 73 °C, and it was photographed using parallel monochromatic light from a laser.The interfacial tensions were measured for a series of polymers of different molecular weights and were found to increase with increasing PPO molecular weight but to decrease slightly with increasing PEO molecular weight. The dependence on PPO molecular weight is explained as due to the adsorption of hydroxy end groups of the PPO at the PEO interface. When these end groups were "replaced by methoxy groups, the adsorption no longer took place and the interfacial tension increased.
Zusammenfassung Die Grenzflächenspannungen einer Reihe von Polyäthylenoxyden (PEO) und Polypropylenoxyden (PPO) wurden mittels der Methode des hängenden Tropfens gemessen. Ein Tropfen aus PEO wurde erzeugt unter PPO in einer temperierten Zelle bei gewöhnlich 73 ° C und wurde in parallelem monochromatischem Licht eines Lasers photographiert.Die Grenzflächenspannungen wurden für eine Reihe von Polymeren mit unterschiedlichem Molekulargewicht gemessen und nahmen zu mit steigendem PPO-Molekulargewicht, nahmen aber leicht ab mit zunehmendem PEO Molekulargewicht. Die Abhängigkeit vom PPO Molekulargewicht wird erklärt als Effekt der Adsorption von Hydroxyl-Endgruppen des PPO an der PEO Grenzfläche. Ersetzt man diese Endgruppen durch Methoxyl-Gruppen, beobachtet man keine Adsorption und die Grenzflächenspannung nimmt zu.


With 2 figures and 4 tables  相似文献   

13.
Morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA)/toluene droplets, in which phase separation proceeds, dispersed in SDS aqueous solution was examined. It changed from ex-centered PS-core/PMMA-shell to hemisphere with increasing SDS concentration. At low polymer weight fraction (wp), PS and PMMA phases contained non-negligible amount of PMMA and PS, respectively. The small amount of PS and PMMA in PMMA and PS phases, respectively, affected significantly the interfacial tension between polymer/toluene and aqueous solutions. Interfacial tension between PS and PMMA phases at low wp was measured by the spinning drop method, showing a quite low value ( approximately 10-2 mN/m). Predicted morphology obtained from calculation of minimum total interfacial free energy of the droplets using the interfacial tensions agreed well with the experimental observation.  相似文献   

14.
In this work, a coflowing microfluidic device was used to determine the influence of different mixed sodium dodecyl sulfate (SDS)-poly(ethylene glycol) (PEG) compound systems on dynamic interfacial tension and, by extension, corresponding emulsion droplet sizes. The aqueous solutions were used as the continuous phase in the microfluidic device, while octane was used as the organic dispersed phase. Combined SDS-PEG systems lower the interfacial tension more than either component can alone up to the critical aggregation concentration (CAC) of SDS. Octane droplet sizes produced in the microfluidic device using combined SDS-PEG systems were smaller than those produced using SDS alone, and a reduction in dynamic interfacial tension as determined by drop size followed a pattern similar to that observed in the static case (PEG4000 > PEG600 > PEG400 > PEG200 > PEG8000) with the exception of PEG8000. Finally, a previously formulated model relating interfacial tension to droplet size was used to estimate the dynamic interfacial tensions in the microfluidic device.  相似文献   

15.
The surface activities of lysozyme and dipalmitoyl phosphatidylcholine (DPPC) vesicles at aqueous/compressed fluid interfaces are examined via high-pressure interfacial tension measurements using the pendant drop technique. The density and interfacial tension in compressible fluid systems vary significantly with pressure, providing a versatile medium for elucidating interactions between biomolecules and fluid interfaces and a method to elicit pressure-dependent interfacial morphological responses. The effects of lysozyme concentration (0.0008, 0.01, and 1 mg/mL) and pressure (> or = 7 MPa) on the dynamic surface response in the presence of ethane, propane, N2, and CO2 at 298 K were examined. Interfacial lysozyme adsorption reduced the induction phase and quickly led to interfacial tensions consistent with protein conformational changes and monolayer saturation at the compressed fluid interfaces. Protein adsorption, as indicated by surface pressure, correlated with calculated Hamaker constants for the compressed gases, denoting the importance of dispersion interactions. For DPPC at aqueous/compressed or aqueous/supercritical CO2 interfaces (1.8-20.7 MPa, 308 K), 2-3-fold reductions in interfacial tension were observed relative to the pure binary fluid system. The resulting surface pressures infer pressure-dependent morphological changes within the DPPC monolayer.  相似文献   

16.
We performed electrowetting (EW) contact angle measurements to determine the interfacial tension between aqueous drops laden with various inorganic and organic solutes and various ambient oils. Using low frequency AC voltage, we obtained interfacial tensions from 5 to 72 mJ/m 2, in close agreement with macroscopic tensiometry for drop volumes between 20 and 2000 nL. In addition to the conventional EW geometry, we demonstrate the possibility of performing "contact-less" measurements without any loss of accuracy using interdigitated coplanar electrodes.  相似文献   

17.
The shape relaxation of a distorted viscous drop suspended in a quiescent immiscible liquid is analyzed in the creeping flow limit. The shape of the drop is axisymmetric, but otherwise arbitrary. The relaxation process is assumed to be driven by a constant interfacial tension and rate-limited by the Newtonian viscosities of the dispersed and continuous phases. For analysis, a least squares technique is developed which, compared to the more common boundary integral methods, is simpler to implement and especially suited for systems where one liquid is much more viscous than the other (i.e., when the viscosity ratio lambda, defined as the ratio of the dispersed to continuous phase viscosities, approaches either zero or infinity). To demonstrate the validity of the proposed least squares technique, its results are shown to agree well with boundary integral calculations for moderate values of lambda, and with experimental data when lambda is much larger than unity (approximately 10(6)). Predictions at infinite viscosity ratio--the regime in which the least squares technique is most useful--are then used to evaluate interfacial tensions associated with a system of practical importance, namely, the dispersion of heavy crude oil in an aqueous environment. This amounts to a novel and accurate technique for determining interfacial tensions--especially those of low values (1 mN/m or less)--between density-matched liquids where at least one of the phases is highly viscous. The experimental part of this study involves the use of suction pipettes to manipulate the shapes of individual micrometer-sized droplets, thus avoiding the need for complex flow-generating devices to create drop deformations.  相似文献   

18.
正负离子混合表面活性剂双水相界面张力的研究   总被引:3,自引:0,他引:3  
阮科  张翎  汤皎宁  肖进新 《物理化学学报》2006,22(12):1451-1455
用旋转滴法测定了正负离子混合表面活性剂形成的双水相界面张力, 研究了双水相界面张力与表面活性剂的分子结构、正负离子表面活性剂的摩尔比、总浓度、外加无机盐及温度的关系. 结果表明, 双水相界面张力在一定正、负离子表面活性剂的摩尔比时属于超低界面张力范围. 观察到三种界面张力曲线类型, 第一类为摩尔比1:1 的两边的两条曲线, 界面张力随过剩表面活性剂组分的比例增加而降低; 第二类为一条跨过摩尔比1:1的马鞍型曲线; 第三类为位于摩尔比1:1的一边的一条马鞍型曲线. 界面张力曲线的类型主要取决于表面活性剂的分子结构, 包括亲水基类型、疏水链长度及对称性.  相似文献   

19.
The effect of solute concentrations on interfacial tension was investigated in phase-separated mixtures of dextran and gelatin over a range of concentrations that covered different tie-lines and different positions on one tie-line. The investigations were carried out using equilibrated gelatin-rich and dextran-rich phases in a computer-controlled Couette device at 40 degrees C (above the gelation point of gelatin) and interfacial tensions were measured using the retracting drop method. The results show that the interfacial tension can be related to the length of the tie-line or to the difference in the concentration of dextran (or gelatin) in the separated phases. Interfacial tension increases as either of these parameters increases. For concentrations lying on any single tie-line, the interfacial tension is constant and independent of the concentration of biopolymers. Also, the addition of small amounts of low molecular weight dextran to a dextran-rich phase does not significantly affect the interfacial tension between the gelatine-rich and dextran-rich phases. Experimental results were also compared with theoretical predictions of the interfacial tension using a Flory-Huggins based analysis of the measured tie-line data. Reasonable agreement was found between predicted and measured values, indicating that this approach captures the basic physics of the system.  相似文献   

20.
A homemade pendant drop/bubble tensiometer was assembled and applied to perform the surface-interfacial tension measurements for the binary water+ethylene glycol monobutyl ether (C4E1) mixture over the temperature range from 50 to 128 degrees C at 10 bar. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH2i+1(OCH2CH2)jOH. The wetting behavior of the C4E1-rich phase at the interface separating the gas and the aqueous phases was systematically examined according to the wetting coefficient calculated from the experimental results of surface/interfacial tensions. It was found that the C4E1-rich phase exhibits a sequence of wetting transitions, nonwetting-->partial wetting-->complete wetting, at the gas-water interface in the water+C4E1 system along with increasing the temperature, consistent with the conjecture of Kahlweit and Busse [J. Chem. Phys. 91, 1339 (1989)]. In addition, the relationship of the mutual solubility and the interfacial tension of the interface separating the C4E1-rich phase and the aqueous phase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号