首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to determine and to interpret the influence of nonwetting on the aggregation dynamics of micronic solid particles in a turbulent medium. Two silica granular samples were studied: one was naturally hydrophilic; the other was made hydrophobic. Aggregation in an aqueous ethanol solution was followed by in situ turbidimetry. The influence of stirring rate and deaeration was determined. Aggregates of hydrophilic particles were small and fragile, whereas aggregates of hydrophobic particles were large and solid. Moreover, they differred greatly in optical properties. Within the proposed approach, different features of the aggregate morphology were identified: fractal dimension, maximum size, and gas content of the hydrophobic clusters. These elements are taken into account in the models of aggregation dynamics proposed here.  相似文献   

2.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

3.
The effect of solvent on stability of water-in-oil microemulsions has been studied with AOT (sodium bis(2-ethylhexyl)sulfosuccinate) and different solvent mixtures of n-heptane, toluene and dodecane. Dynamic light scattering DLS was used to monitor the apparent diffusion coefficient D(A) and effective microemulsion droplet diameter on changing composition of the solvent. Interdroplet attractive interactions, as indicated by variations in D(A), can be tuned by formulation of appropriate solvent mixtures using heptane, toluene, and dodecane. In extreme cases, solvent mixtures can be used to induce phase transitions in the microemulsions. Aggregation and stability of model AOT-stabilized silica nanoparticles in different solvents were also investigated to explore further these solvent effects. For both systems the state of aggregation can be correlated with the effective molecular volume of the solvent V(mol)(eff) mixture.  相似文献   

4.
Aggregation and breakage of aggregates of fully destabilized polystyrene latex particles in turbulent flow was studied experimentally in both batch and continuous stirred tanks using small‐angle static light scattering. It was found that the steady‐state values of the root‐mean‐square radius of gyration are fully reversible upon changes of stirring speed as well as solid volume fraction. Steady‐state values of the root‐mean‐square radius of gyration were decreasing with decreasing solid volume fraction as well as with increasing stirring speed. Moreover, it was found that the steady‐state structure and shape of the aggregates is not influenced by the applied stirring speed.  相似文献   

5.
The aggregation and cloud point behavior of Tb(III)-doped silica nanoparticles has been studied in Triton X-100 (TX-100) solutions at various concentration conditions by fluorimetry, dynamic light scattering, electrophoresis and transmission electron microscopy methods. The temperature responsive behavior of nanoparticles is observed at definite concentration of TX-100, where the aggregation of TX-100 at the silica/water interface is evident from the increased size of the silica nanoparticles. The reversible dehydration of TX-100 aggregates at the silica/water interface should be assumed as the main reason of the temperature induced phase separation of silica nanoparticles. The distribution of nanoparticles between aqueous and surfactant rich phases at the phase separation conditions can be modified by the effect of additives.  相似文献   

6.
Aggregation of thiol-stabilized silver nanoparticles induced by 1,6-hexane dithiol was studied in situ by dynamic light scattering. The aggregates were observed to reach a finite size in the 100-200 nm range depending on the applied conditions. Growth kinetics were shown to be linked to the dynamics of the thiol-exchange reaction. A model for the aggregation process was developed on the basis of a simple diffusion-kinetic approach assuming an elementary kinetic reaction at the surfaces and a spherical diffusion field surrounding the aggregates. The rate constant for the thiol exchange reaction was found to vary between 0.6 and 4.0 x 10(-4) s(-1), and the activation energy was 46 +/- 10 kJ mol(-1).  相似文献   

7.
The interaction of the globular protein lysozyme with silica nanoparticles of diameter 20 nm was studied in a pH range between the isoelectric points (IEPs) of silica and the protein (pH 3-11). The adsorption affinity and capacity of lysozyme on the silica particles is increasing progressively with pH, and the adsorbed protein induces bridging aggregation of the silica particles. Structural properties of the aggregates were studied as a function of pH at a fixed protein-to-silica concentration ratio which corresponds to a surface concentration of protein well below a complete monolayer in the complete-binding regime at pH > 6. Sedimentation studies indicate the presence of compact aggregates at pH 4-6 and a loose flocculated network at pH 7-9, followed by a sharp decrease of aggregate size near the IEP of lysozyme. The structure of the bridged silica aggregates was studied by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The structure factor S(q) derived from the scattering profiles displays characteristic features of particles interacting by a short-range attractive potential and can be represented by the square-well Percus-Yevick potential model, with a potential depth not exceeding 3k(B)T.  相似文献   

8.
 The self-association of n-hexyltrimethylammonium bromide (C6TAB) in aqueous solution has been studied by static and dynamic light scattering and NMR spectroscopy at 25 °C in the presence of added electrolyte, and critical aggregation concentrations, aggregation numbers and the degree of ionization have been calculated. Aggregation numbers determined from light scattering and from the application of mass-action theory to the concentration dependence of 1H NMR chemical shifts of four protons along the alkyl chain of C6TAB, were between three and four over the range of electrolyte concentration studied (0.2–0.7  molkg−1 NaBr). A structure for the small aggregates has been proposed from the NMR chemical shift data. Received: 4 June 2001 Accepted: 17 September 2001  相似文献   

9.
The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles.  相似文献   

10.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

11.
The present work introduces the interaction of hard and soft colloids in aqueous solutions at various temperatures and concentrations, as well as at critical conditions of temperature induced phase separation. Hard and soft colloids are represented by luminescent silica nanoparticles and aggregates of PEO-PPO-PEO and PPO-PEO-PPO triblock copolymers correspondingly. The formation of the mixed aggregates between hard and soft colloids in equilibrium conditions has been revealed by dynamic light scattering measurements. The distribution of silica nanoparticles between aqueous and surfactant rich phases after phase separation highlights the effect of pH, architecture and concentration of triblock copolymers on the mixed hard-soft colloids aggregation at cloud point conditions. The peculiar aggregation and phase behavior of PPO-PEO-PPO pluronics should be assumed as the main reason of the enhanced mixed aggregation with SNs at increased temperatures and concentrated conditions.  相似文献   

12.
Aggregation of thermosensitive polymer-coated gold nanoparticles was performed in aqueous solution in the presence of a triblock copolymer poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic P123, PEO(20)-PPO(68)-PEO(20)). The gold nanoparticles, AuNPs, which are covered by thermosensitive statistical copolymers poly(EO(x)-st-PO(y)), aggregate when the temperature is higher than the phase transition temperature of the polymer, leading to a macroscopic precipitation. The presence of Pluronic chains in solution prevents the uncontrolled aggregation of the AuNPs at higher temperature than both the aggregation temperature of the AuNPs (T(agg)) and the critical micellization temperature (cmt) of the Pluronic. The size, the colloidal stability, and the optical properties of the AuNPs aggregates are modulated as a function of the P123-to-AuNP ratio, which constitutes the critical parameter of the system. Moreover, the AuNP aggregation is totally reversible upon decreasing the temperature below T(agg). Our approach constitutes an easy way to the formation of well-controlled nanoparticle aggregates with well-defined sizes. The resulting aggregates have been characterized by UV-vis spectroscopy, dynamic light scattering, and electron microscopy.  相似文献   

13.
Self aggregation of the ionic liquids, 1-butyl-3-methylimidazolium chloride [C4mim][Cl], 3-methyl-1-octylimidazolium chloride [C8mim][Cl], 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4], N-butyl-3-methylpyridinium chloride [C4mpy][Cl], in aqueous solution has been investigated through 1H nuclear magnetic resonance (NMR) and steady-state fluorescence spectroscopy. Aggregation properties were determined by application of mass action theory to the concentration dependence of 1H NMR chemical shifts. Aggregation properties showed fairly good agreement with the previously reported results obtained from small angle neutron scattering, conductivity, and surface tension measurements. A detailed analysis of chemical shifts of water and various protons in ILs has been employed to probe the aggregate structure. Fluorescence spectroscopy provided important information about the critical aggregation concentration (cac) and the microenvironment of the aggregates. We could also observe a break point quite consistent with that of 1H NMR and fluorescence spectroscopy at cac from the concentration dependence of refractive index measurements. Standard free energies of aggregation DeltaGom of various ILs derived using the refractive index/concentration profiles were found comparable to those of classical ionic surfactants.  相似文献   

14.
This study investigates the aggregation in cyclohexane of silica particles initially stabilized by grafted polystyrene and destabilized by temperature reduction. It complements an earlier study by Zhu and Napper (P.W. Zhu, D.H. Napper, Phys. Rev. E 50 (1994) 1360) in which the aggregation of polystyrene latex particles with tethered poly(N-isopropyl acrylamide) (PNIPAM) in water was investigated. Their dynamic light scattering results showed that both the rate of aggregation and the aggregate fractal dimension increased with a sufficient decrease in the PNIPAM adlayer solvency, achieved by means of either salt (NaNO3) addition or temperature rise. This result stands in contrast to those obtained when an electrostatically stabilized colloid is destabilized, i.e., that the more rapidly aggregates are formed, the lower the resulting fractal dimension. The authors explained their results in terms of the effects of both salt effects and increased temperature on the extent of the hydrophobic interactions between the adlayer-covered surfaces in the water. The present study examines a sterically-stabilized colloid in a nonaqueous solvent, where neither salt effects nor hydrophobic effects play a role. Temperature is decreased to bring the system from better-than-theta-conditions to worse-than-theta-conditions. Power-law aggregation kinetics are observed at 15.7 degrees C by dynamic light scattering. The particles first undergo reduced rate aggregation, producing low-fractal-dimension aggregates, which after some time, restructure into more compact aged clusters. The fractal dimension of these aged clusters increases with increasing initial aggregation rate, consistent with results seen by Zhu and Napper, but without the presence of hydrophobic effects. The ability of the polymer-grafted particles to rearrange suggests aggregation into a secondary minimum, with the ability to slide over one another to achieve a more energetically favorable, denser configuration. The reversible nature of the aggregation is verified by additional experiments gradually bringing the system from worse-than-theta-conditions back to better-than-theta-conditions, with an attendant decrease in aggregate fractal dimension, and ultimately full redispersion.  相似文献   

15.
Latex aggregates, formed in 1 M McIlvaine buffer solution and 0.2 M NaCl solution, have been characterized in terms of aggregate size distribution and fractal morphology. This was achieved using three sizing techniques (image analysis, laser scattering, and electrical sensing) in which size distributions and fractal properties of the aggregates were measured. Estimates of fractal dimensions were made using the two-slope method based on dimensional analysis and the small-angle light scattering method. Aggregate suspensions were prepared using both water and a mixture of heavy water/ water as the solvent. The latter essentially eliminated sedimentation, which was observed after one day of aggregation when water alone was used as a solvent. Latex aggregates formed by diffusion-limited colloid aggregation (DLCA) and reaction-limited colloid aggregation (RLCA) had fractal dimensions close to 1.8 and 2.1, respectively. As observed through image analysis, DLCA aggregates possessed a loose tenuous structure, whereas RLCA aggregates were more compact. Disruption of both DLCA and RLCA aggregates has been investigated in laminar flow and turbulent capillary flow. The shear forces introduced by a laminar shear device with a shear rate up to 1711 s(-1) were unable to bring about aggregate breakup; shearing facilitates aggregate growth in the case of DLCA. However, latex aggregates were significantly disrupted after passage through a turbulent capillary tube at 95209 s(-1). Copyright 2000 Academic Press.  相似文献   

16.
The aggregation properties of single-chain surfactants bearing one (H1), two (H2), and three (H3) trimethylammonium head groups have been studied by small-angle neutron scattering (SANS). Growth of aggregates was observed to decrease dramatically with an increase in the number of head groups in the surfactants. The micelles grow progressively smaller with every increase in the number of head groups of the surfactants. Aggregation number (N) continuously decreases and the fractional charge (alpha) gradually increases with the increase in the number of head groups. The semiminor axis (a) and semimajor axis (b=c) of the micelle decrease strongly with the increase in the number of head groups. In the case of H1, dramatic micellar growth is observed on addition of salts such as KBr and sodium salicylate, but this type of micellar growth is not observed in the cases of H2 and H3 when the above salts are added to their micellar solutions. Aggregation number and size of the micelles remain almost the same, even after addition of KBr at a concentration as high as 100 mM. This observation with multiheaded cationic surfactants is unusual. Clearly, the charge density at the head group level of surfactants markedly influences their micellar aggregation properties.  相似文献   

17.
The interaction of lysozyme protein (M.W. 14.7 kD) with two sizes of silica nanoparticles (16 and 25 nm) has been examined in aqueous solution using UV-vis spectroscopy and small-angle neutron scattering (SANS). The measurements were performed on fixed concentration (1 wt %) of nanoparticles and varying concentration of protein in the range 0 to 2 wt %. The adsorption isotherm as obtained using UV-vis spectroscopy suggests strong interaction of the two components and shows an exponential behavior. The saturation values of adsorption are found to be around 90 and 270 protein molecules per particle for 16 and 25 nm sized nanoparticles, respectively. The adsorption of protein on nanoparticles leads to the aggregation of particles and these structures have been studied by SANS. The aggregates are characterized by fractal structure coexisting with unaggregated particles at low protein concentrations and free proteins at higher protein concentrations. Further, contrast variation SANS measurements have been carried out to differentiate the adsorbed and free protein in these systems.  相似文献   

18.
We investigate the aggregation kinetics of gold nanoparticles using both experimental techniques (i.e., quasi-elastic light scattering, UV-visible spectroscopy, and transmission electron microscopy) and mathematical modeling (i.e., constant-number Monte Carlo). Aggregation of gold nanoparticles is induced by replacing the surface citrate groups with benzyl mercaptan. We show that the experimental results can be well described by the model in which interparticle interactions are described by the classical DLVO theory. We find that final gold nanoparticle aggregates have a fractal structure with a mass fractal dimension of 2.1-2.2. Aggregation of approximately 11 initial gold nanoparticles appears to be responsible for the initial color change of suspension. This kinetic study can be used to predict the time required for the initial color change of a gold nanoparticle suspension and should provide insights into the design and optimization of colorimetric sensors that utilize aggregation of gold nanoparticles.  相似文献   

19.
The aggregation kinetics of particles in dense polystyrene latex suspensions is studied by low-coherence fiber optic dynamic light scattering. Low-coherence fiber optic dynamic light scattering is used to measure the hydrodynamic radius of the aggregates. The aggregation kinetics data obtained can be fitted into a single exponential function, which is the characteristic of slow aggregation. It is found that the aggregation rate of particles increased with higher electrolyte levels and with larger particle concentrations. The experimental results can be explained by use of the Derjaruin-Landau-Verwey-Overbeer (DLVO) theory.  相似文献   

20.
Structural properties of small aggregates containing up to 100 particles have been studied through detailed Monte Carlo cluster-cluster aggregation simulations in both diffusion-limited and reaction-limited conditions. First, the radius of gyration, the radius of the smallest sphere encompassing the cluster, and the particle-particle correlation function, g(r), have been computed based on the positions of all the particles in the cluster, and their fractal scaling has been analyzed. Then, an empirical model has been developed to simulate the g(r) function for aggregates of any size and used to determine the corresponding structural properties and scattering structure factors. Finally, in order to illustrate the application of the structural properties thus computed, two experiments on diffusion-limited aggregation have been performed, and the average scattering structure factors have been measured as a function of time using a small-angle light-scattering device. The obtained average scattering structure factors have been simulated using the Smoluchowski population balance equations, using the single aggregate structural properties and scattering structure factor predicted by the developed empirical g(r) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号