首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azo-hydrazone tautomerism in azo dyes has been modeled by using density functional theory (DFT) at the B3LYP/6-31+G(d,p) level of theory. The most stable tautomer was determined both for model compounds and for azo dyes Acid Orange 7 and Solvent Yellow 14. The effects of the sulfonate group substitution and the replacement of the phenyl group with naphthyl on the tautomer stability and on the behavior in solvent have been discussed. Intramolecular hydrogen bond energies have been estimated for the azo and hydrazone tautomers to derive a relationship between the tautomer stability and the hydrogen bond strength. The transition structures for proton transfer displayed resonance assisted strong hydrogen bonding properties within the framework of the electrostatic-covalent hydrogen bond model (ECHBM). Evolution of the intramolecular hydrogen bond with changing structural and environmental factors during the tautomeric conversion process has been studied extensively by means of the atoms-in-molecules (AIM) analysis of the electron density. The bulk solvent effect was examined using the self-consistent reaction field model. Special solute-solvent interactions were further investigated by means of quantum mechanical calculations after defining the first-solvation shell by molecular dynamics simulations. The effect of cooperative hydrogen bonding with solvent molecules on the tautomer stability has been discussed.  相似文献   

2.
The molar transition energy (E(T)) polarity values for the solvatochromic probes 2,6-diphenyl-4-(2,4,6-triphenylpyridinium)phenolate (1), 4[(1-methyl-4-(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (2), and 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (3) were collected in binary mixtures comprising chloroform and a hydrogen-bond accepting (HBA) solvent [dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), acetone or acetonitrile], aiming to investigate the ability of the chlorinated component to act as hydrogen-bond donating (HBD) solvent. Plots of E(T) as a function of X(2), the mole fraction of chloroform, were obtained and the data were analysed to investigate the preferential solvation (PS) of each probe in terms of both solute-solvent and solvent-solvent interactions. For dyes 1 and 2 a strong synergistic behavior was observed for all mixtures studied, indicating that the dyes are preferentially solvated by complexes formed through hydrogen bonding between chloroform and the HBA component in the mixtures. A study of 1 in deuterated chloroform with an HBA component (DMF and DMA) demonstrated that while almost no differences occur with the DMF mixtures, the presence of deuterated chloroform in its mixtures with DMA increases the synergistic effect, suggesting that it interacts more strongly with DMA, making its mixtures more polar. These data were successfully fitted to a model based on solvent-exchange equilibria. The features of the mixtures with dye 3 revealed a very different profile in comparison with the other two dyes, which suggests that in mixtures containing chloroform, the microenvironment of the dye seems to be important in determining the contribution of the structure resonances responsible for the stability of the dye.  相似文献   

3.
Structural, bonding and electronic characteristics of complexes of anthraquinone and 1-arylazo-2-naphtol dyes and cellulose I β are studied using B3LYP density functional method with 6-31G** basis set based on the partially and fully optimized structures. Results reveal that for both partially and fully optimized complexes, there is a stabilizing attraction between dyes and cellulose surface. The hydrazone (Hy) tautomer in anionic state (Hy–SO3 ?) shows the strongest interaction with the cellulose surface. Natural bond orbital (NBO) and atoms-in-molecules (AIM) analyses have been carried out to study the nature of azo dyes-cellulose bonds in detail. According to NBO analysis, a remarkable charge transfer occurs between the –SO3 ? and –SO3H functional groups of the dye and the cellulose surface which can be regarded as the main source of the large dye–cellulose interaction energy. AIM analysis confirms the existence of hydrogen and van der Waals bonds between the azo dyes and cellulose. Furthermore, a very good agreement is observed between the number of hydrogen bonding sites and dye–cellulose interaction energies.  相似文献   

4.
The effect of 15 polar solvents on absorption and fluorescence energies of a typical fluorinated azo dye, 4-(2,3,5,6-tetrafluoro-pyridin-4-yl azo)-phenol, was reported for its acidic, MH, and basic, M, structures.For MH, the absorption energy is described on the basis of multi-linear equation with Taft's π* (solvent polarity) and β (hydrogen bond acceptor) parameters while the fluorescence energy varies rectilinearly with free energy of transferring the proton to the surrounding solvent, ΔGt°.For M, the hydrogen bonding donor ability of protic solvent, α, is a predominant factor which affects the absorption energy while in aprotic solvents, the absorption energy correlates linearly with Kirkwood function. As the ability of the solvent for hydrogen bonding increases, the absorption band width will increase in parallel with the transition energy.  相似文献   

5.
For a data set with 30 direct azo dyes taken from literature, quantitative structure-activity relationship (QSAR) analyses have been performed to model the affinity of the dye molecules for the cellulose fiber. The electronic structure of the compounds was characterized using quantum chemical gas-phase (AM1) and continuum-solvation molecular orbital parameters. As regards the solution phase, COSMO appears to be better suited than SM2 in quantifying relative trends of the aqueous solvation energy. For the dye-fiber affinity, the leave-one-out prediction capability of multilinear regression equations is superior to CoMFA, with predictive squared correlation coefficients ranging from 0.63 (pure CoMFA) to 0.89. At the same time, solution-phase CoMFA is superior to previously derived AM1-based CoMFA models. As a general trend, the dye-fiber affinity increases with increasing electron donor capacity that corresponds to an increasing hydrogen bond acceptor strength of the azo dyes. The discussion includes the consideration of structural features that are likely to be involved in dye-fiber and dye-dye hydrogen bonding interactions, and possible links between CoMFA electrostatic results and the atomic charge distribution of the compounds.  相似文献   

6.
The molar transition energy (E(T)) polarity values for the dye 4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide were collected in binary mixtures comprising a hydrogen-bond accepting (HBA) solvent (acetone, acetonitrile, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF)) and a hydrogen-bond donating (HBD) solvent (water, methanol, ethanol, propan-2-ol, and butan-1-ol). Data referring to mixtures of water with alcohols were also analyzed. These data were used in the study of the preferential solvation of the probe, in terms of both solute-solvent and solvent-solvent interactions. These latter interactions are of importance in explaining the synergistic behavior observed for many mixed solvent systems. All data were successfully fitted to a model based on solvent-exchange equilibria. The E(T) values of the dye dissolved in the solvents show that the position of the solvatochromic absorption band of the dye is dependent on the medium polarity. The solvation of the dye in HBA solvents occurs with a very important contribution from ion-dipole interactions. In HBD solvents, the hydrogen bonding between the dimethylamino group in the dye and the OH group in the solvent plays an important role in the solvation of the dye. The interaction of the hydroxylic solvent with the other component in the mixture can lead to the formation of hydrogen-bonded complexes, which solvate the dye using a lower polar moiety, i.e. alkyl groups in the solvents. The dye has a hydrophobic nature and a dimethylamino group with a minor capability for hydrogen bonding with the medium in comparison with the phenolate group present in Reichardt's pyridiniophenolate. Thus, the probe is able to detect solvent-solvent interactions, which are implicit to the observed synergistic behavior.  相似文献   

7.
The UV–vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (CnTAB) surfactants with n = 10–16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.  相似文献   

8.
Mesogenic materials containing cholest-5-en-3-ol-(3β)[4-phenylpyridylazo]carbonate (CPPC) and 4-n-alkyloxybenzoic acids have been synthesized using hydrogen bonding as a mechanism for self-assembly. Phase diagrams of the binary mixtures of the hydrogen bond donor and acceptor were established using polarizing optical microscopy. The maximum isotropization point was observed for the 50 mol % composition confirming the formation of stable 1 : 1 complexes due to intermolecular hydrogen bonding. All the supramolecular assemblies built from 1 : 1 molar ratios of the hydrogen bond donor and acceptor moieties exhibit well defined smectic A (SmA) liquid crystal phases on heating and cooling cycles. The SmA phases exhibited by the complexes are not observed for the individual components. The azobenzene moiety of CPPC undergoes trans-cis-photoisomerization with a quantum yield of 0.1 and the activation energy for the thermal cis-trans-isomerization was estimated as 92 kJ mol-1.  相似文献   

9.
韩江政  赵振冬  樊毅  王岚 《化学研究》2013,(2):149-154,158
采用镍铁类水滑石作为吸附剂,对偶氮阴离子染料酸性大红G、活性艳红X-3B和直接耐酸大红4BS废水进行脱色处理,研究了时间、镍与铁的物质的量之比、初始pH和无机电解质添加剂等因素对脱色率的影响,并结合红外光谱和X射线衍射分析结果讨论了其吸附脱色机理.结果表明,三种染料在镍铁类水滑石上的吸附均为层间的阴离子交换吸附和外表面的吸附.通过阴离子交换进入层间后,不同于直接耐酸大红4BS阴离子,酸性大红G和活性艳红X-3B两种阴离子与水滑石层间水分子之间产生氢键作用;在化学键合过程中,染料分子被镍铁类水滑石表面Fe3+氧化,同时偶氮键断裂导致脱色.  相似文献   

10.
The UV-vis spectroscopic behavior of dyes: 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (1) and 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (2) was investigated in solutions of methyl- beta-cyclodextrin (methyl-beta-CyD), using water, methanol, ethanol, propan-2-ol, butan-1-ol, acetone, acetonitrile, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), chloroform and dichloromethane as solvents. In aqueous solutions of dye (2) the addition of M-beta-CD leads to a bathochromic shift (of the maximum absorption), showing that the probe was transferred to a microenvironment of lower polarity and suggesting the formation of a 1 : 1 dye (2) : CyD inclusion complex, with a binding constant of 128.5 +/- 3.5 dm(3) mol(-1). Data for dye 2 in alcohols showed hypsochromic shifts, which increased in the following order: methanol < ethanol < propan-2-ol < butan-1-ol. These observations appear to reflect dye-solvent interactions through hydrogen bonding. If dye-solvent interactions are strong, the CyD-dye interactions are consequently weak, but the latter increase in importance when the dye-solvent interaction becomes weaker. With hydrogen-bond accepting solvents, data for both dyes showed clearly increasing hypsochromic shifts following the order: DMSO < DMA < DMF < acetone < acetonitrile. This order is exactly the inverse of the increasing order of basicity of the medium. This indicates that the dominant factor for the observed effects in these solvents is the solvent-CyD interaction through hydrogen bonding involving the hydroxyl groups of the CyD and the basic groups of the solvents. These interactions diminish in intensity if the basic character of the medium is reduced, increasing the capability of the dye to interact with the CyD using its phenoxide donor moiety. The largest hypsochromic shifts were obtained in chloroform (66.0 nm) and dichloromethane (67.5 nm) with dye after addition of methyl-beta-CyD. In these specific situations, solvents display weak basic and acid properties, that enhanced CyD-dye interactions to such an extent that association complexes formed through hydrogen bonding could be detected (K11) values of 24.8 +/- 4.9 dm3 mol(-1) in dichloromethane and 66.1 +/- 8.0 dm3 mol(-1) in chloroform).  相似文献   

11.
Boraei A  Mohamed N 《Annali di chimica》2002,92(5-6):575-585
The deprotonation and acid ionization constants of some triazole derivatives in various aqueous-organic solvent mixtures were determined potentiometrically at 20 degrees C. The organic solvents used were methanol, ethanol, DMF, DMSO, acetonitrile, acetone and dioxane. The high stabilization of both the non-protonated form by dispersion forces and of the proton by its interaction with the organic solvent are the main factors influencing the deprotonation constant in aqueous mixtures of methanol, ethanol, DMF or DMSO. On the other hand, the hydrogen bonding interactions and the solvent basicity, in addition to the electrostatic effect, contribute to the major effects in the deprotonation process (in solutions enriched with acetonitrile, acetone or dioxane) and the acid ionization process in different aqueous-organic solvent mixtures. Some thermodynamic parameters (delta H, delta G, delta S) of the ionization processes in a pure aqueous medium are also determined and discussed.  相似文献   

12.
The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye.  相似文献   

13.
14.
15.
The solvent shifts of haloformic protons, (Cl3CH, Br3CH, I3CH), have been measured in 24 n-electron donor solvents consisting of halogenated hydrocarbons, esters, ketones, ethers and amines. Deviations of ΔBr and Δ1 from linear dependence with ΔCl are indicative of the presence of halogen bond formation competitive with hydrogen bonding interactions. Bromoform interacts predominantly by hydrogen bonding, halogen bonding being detected to a small extent in chlorinated hydrocarbons and amines. Iodoform shows halogen bonding interactions which increase in relative importance to hydrogen bonding with solvent basicity. Halogen bonding is predominant for solutions of iodoform in amines.  相似文献   

16.
Spectroscopic investigations involving the interaction of acridinedione dyes with urea and its derivatives in water and methanol were carried out by absorption, steady-state fluorescence, and time-resolved fluorescence measurements. The hydrogen-bonding properties of urea and derivatives in aqueous solutions are found to be distinctly different from those observed in methanol. Urea, which can serve both as a hydrogen bond donor as well as an acceptor and has a unique hydrogen-bonding feature, helps in studying urea interaction with fluorophores in aqueous solutions, micelles, and alcohol. In our studies, we have used acridinedione dyes as the probe. We report that the hydrophobic interaction of urea with dye predominates by weakening of the hydrogen-bonding interaction of the solvent and urea derivatives with increase in the hydrophobicity of urea derivatives. In methanol, the hydrogen bonding between solvent and urea derivatives predominating over the hydrophobicity of the urea derivatives is observed. The presence of alkyl group substitution in the N-H moiety with a function of increasing concentration resulting in the creation of a more favorable hydrophobic environment to the dye molecule to reside in the hydrophobic shell phase rather than in the bulk aqueous phase is illustrated. The hydrophobic interaction of dye with urea in aqueous solution predominates because of the weakening of the hydrogen bonding of the solvent and urea derivatives, and the photoinduced electron transfer (PET) process is used as a marker to identify the hydrophobic interaction illustrated in our studies.  相似文献   

17.
The synthesis and the solvatochromic properties of five dyes, obtained by condensation of guaiazulene with 4-hydroxybenzaldehydes, are described. Crystal structures of a quinoid dye and a phenolic dye precursor are presented. The dyes are sensitive to the dipolarity-polarizability of the medium and to the hydrogen-bond donor ability of protic solvents. Their solvatochromism is discussed in terms of Kamlet-Taft's pi* and alpha scales, and their difference in behaviour is interpreted. Alkali and alkaline earth metal salts effect halochromism, with one exception due to extreme steric hindrance. Thus, this dye is capable of measuring solvent polarities without sensing the presence of electrolytes. Preferential solvation of the dyes in a series of binary solvent mixtures is explained quantitatively by solvent-exchange models.  相似文献   

18.
The rate constants of alkaline fading of a number of triphenylmethane (TPM) dyes including methyl green (ME2+), brilliant green (BG+), fuchsin acid (FA2?), and bromophenol blue (BPB2?) were obtained in aqueous binary mixtures of 2‐propanol (protic solvent) and dimethyl sulfoxide (DMSO) (aprotic solvent) at different temperatures. It was observed that the reaction rate constants of BG+ and ME2+ increased and those of FA2? and BPB2? decreased with an increase in weight percentages of aqueous 2‐propanol and DMSO binary mixtures. 2‐Propanol and DMSO interact with the used TPM molecules through hydrogen bonding and ion–dipole interaction, respectively, in addition to their hydrophobic interaction with TPM dyes. The fundamental rate constants of a fading reaction in these solutions were obtained by the SESMORTAC model. Also, the effect of electric charge and substituent groups of a number of TPM dyes on their alkaline fading rate was studied.  相似文献   

19.
20.
The substituent effect on azo‐hydrazone tautomerization of 1‐arylazonaphthen‐ols is studied by means of NMR analysis. Among the 13C chemical shifts, the C(2) of this series compound is the most sensitive to the variation in the nature of substituent on the phenyl ring. Therefore, the variation in the chemical shifts of C(2) is used to probe the substituent effect by using the substituent chemical shifts and free energy vs. Hammett’s constant (χρ+). Both methods give a negative correlation slope, indicating the electron‐with‐ drawing groups favor the hydrazone tautomer form. The effect on the chemical shifts of C(2) of compound 8 in ten solvents can be classified as the solvent with a proton‐donor, proton‐acceptor and arenes system. The substituent with electron‐donating character is more sensitive to the nature of solvent and it favors the hydrazone form. Free energy obtained from the dynamic NMR technique indicates the tautomerization favors the hydrazone‐form for the substituent with electron‐withdrawing character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号