首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the As(III) and As(V) adsorption complexes forming at the gamma-Al(2)O(3)/water interface as a function of pH and ionic strength (I), using a combination of adsorption envelopes, electrophoretic mobility (EM) measurements, and X-ray absorption spectroscopy (XAS). The As adsorption envelopes show that (1) As(III) adsorption increases with increasing pH and is insensitive to I changes (0.01 and 0.8 M NaNO(3)) at pH 3-4.5, while adsorption decreases with increasing I between pH 4.5 and 9.0, and (2) As(V) adsorption decreases with increasing pH and is insensitive to I changes at pH 3.5-10. The EM measurements show that As(III) adsorption does not significantly change the EM values of gamma-Al(2)O(3) suspension in 0.1 M NaNO(3) at pH 4-8, whereas As(V) adsorption lowered the EM values at pH 4-10. The EXAFS data indicate that both As(III) and As(V) form inner-sphere complexes with a bidentate binuclear configuration, as evidenced by a As(III)-Al bond distance of congruent with3.22 ? and a As(V)-Al bond distance of congruent with3.11 ?. The As(III) XANES spectra, however, show that outer-sphere complexes are formed in addition to inner-sphere complexes and that the importance of outer-sphere As(III) complexes increases with increasing pH (5.5 to 8) and with decreasing I. In short, the data indicate for As(III) that inner- and outer-sphere adsorption coexist whereas for As(V) inner-sphere complexes are predominant under our experimental conditions. Copyright 2001 Academic Press.  相似文献   

2.
3.
Adsorptive properties of MgMn-3-300 (MgMn-type layered double hydroxide with Mg/Mn mole ratio of 3, calcined at 300 degrees C) for phosphate were investigated in phosphate-enriched seawater with a concentration of 0.30 mg-P/dm3. It showed the highest phosphate uptake from the seawater among the inorganic adsorbents studied (hydrotalcite, calcined hydrotalcite, activated magnesia, hydrous aluminum oxide, manganese oxide (delta-MnO2)). The phosphate uptake by MgMn-3-300 reached 7.3 mg-P/g at an adsorbent/solution ratio of 0.05 g/2 dm3. The analyses of the uptakes of other constituents (Na+, K+, Ca(+, Cl-, and SO(2-)4) of seawater showed that the adsorbent had a markedly high selectivity for the adsorption of phosphate ions. Effects of initial phosphate concentration, temperature, pH, and salinity on phosphate uptake were investigated in detail by a batch method. The phosphate uptake increased slightly with an increase in the adsorption temperature. The adsorption isotherm followed Freundlich's equation with constants of logK(F)=1.25 and 1/n=0.65, indicating that it could effectively remove phosphate even from a solution of markedly low phosphate concentration as well as with large numbers of coexisting ions. The pH dependence showed a maximum phosphate uptake around pH 8.5. The pH dependence curve suggested that selective phosphate adsorption progresses mainly by the ion exchange of HPO(2-)4. The study on the effect of salinity suggested the presence of two kinds of adsorption sites in the adsorbent: one nonspecific site with weak interaction and one specific site with strong interaction. The effective desorption of phosphate could be achieved using a mixed solution of 5 M NaCl + 0.1 M NaOH (1 M = 1 mol/dm3), with negligible dissolution of adsorbent. The adsorbent had high chemical stability against the adsorption/desorption cycle; it kept a good phosphate uptake even after the repetition of the seventh cycle.  相似文献   

4.
Mixed oxide TiO(2)-Fe(2)O(3) bi-composites have been recognised as efficient and economical sorbents with great promise for arsenic removal from groundwater. In this study, we use a fast, simple and inexpensive synthesis method for this type of bi-composite and assess its adsorption performance. The kinetics of arsenate and phosphate adsorption onto the bi-composite are determined, demonstrating rapid and stable uptake of both oxy-anions over several days and with improved performance compared to the widely used TiO(2) sorbent. A modified pseudo-second order rate equation is introduced, which allows the adsorption kinetics to be modelled as two simultaneous, parallel reaction pathways with separate kinetic parameters. This equation reproduces the experimental observations accurately across a wide range of timescales from minutes to days. Our experimental data agrees with previous interpretations of the adsorption mechanism including the formation of mono-dentate and bi-dentate inner-sphere surface complexes. The arsenate and phosphate uptake capacities of the bi-composite are reported. Equilibrium studies were conducted between pH 5 and 9 and interpreted within the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models.  相似文献   

5.
pH effect on phosphate sorption by crystalline MnO(2)   总被引:1,自引:0,他引:1  
The phosphate anions sorption on manganese dioxide was studied as a function of pH in the range 3-9 and at 293 K. The sorption was observed to increase with the increase in concentration of phosphate and decrease with the increase in pH. No effect of the phosphate adsorption upon the PZC of the solid suggested that the only outer sphere complexes were formed on the surface of the solid. The potentiometric titrations studies of the solid were also performed in the presence of different phosphate concentrations (0.53, 1.053, and 2.11 mmol L(-1)). The calculated pKa values showed that the solid protonation played a dominant role in the uptake of phosphate anions by the solid.  相似文献   

6.
Solid-state NMR spectroscopy and ab initio computational chemistry are used to determine the structure of the complex formed upon adsorption of the mononucleotide 2'-deoxyadenosine 5'-monophosphate (dAMP) to the surface of a mesoporous alumina. In this multi-technique approach, rotational-echo double-resonance NMR results reveal that the phosphate group of dAMP interacts predominantly with octahedrally coordinated aluminum species at the surface, and therefore, adsorption is modeled with both mono- and bidentate sorption of the nucleotide phosphate group with octahedral aluminum. 31P chemical shielding tensors are calculated from the structure of the lowest energy conformations, and these results are compared to tensor values extracted from analysis of spinning-sideband patterns in the experimental 31P cross-polarization magic-angle-spinning NMR spectrum. The chemical shift anisotropy and asymmetry parameter indicate that the binding is via a monodentate, inner-sphere complex.  相似文献   

7.
Sorption of phosphate onto gibbsite (gamma-Al(OH)3) and kaolinite has been studied by both macroscopic and 31P solid-state NMR measurements. Together these measurements indicate that phosphate is sorbed by a combination of surface complexation and surface precipitation with the relative amounts of these phases depending on pH and phosphate concentration. At low pH and high phosphate concentrations sorption is dominated by the presence of both amorphous and crystalline precipitate phases. The similarity between the single-pulse and CP/MAS NMR spectra suggests that the precipitate phases form a thin layer on the surface of the particles in close contact with protons from surface hydroxyl groups or coordinated water molecules. While the crystalline phase is only evident on samples below pH 7, amorphous AlPO4 was found at all pH and phosphate concentrations studied. As pH was increased the fraction of phosphate sorbed as an inner-sphere complex increased, becoming the dominant surface species by pH 8. Comparison of sorption and NMR results suggests that the inner-sphere complexes form by monodentate coordination to singly coordinated Al-OH sites on the edges of the gibbsite and kaolinite crystals. Outer-sphere phosphate complexes, which are readily desorbed, are also present at high pH.  相似文献   

8.
High resolution (HR) NMR spectroscopy of solid polymer by the cross-polarization (CP) and magic angle spinning (MAS) method was applied to the study of the degradation of polyethylene (PE) by γ-irradiation. No change in the HR NMR spectra was observed in high density polyethylene irradiated up to 300 M rad. Above 300 M rad, deviation of chemical shifts of the main peak corresponding to methylene carbons occurred to higher field. Fractions of the methylene in the gauche form were quantitatively estimated from the observed deviations of the main peaks. Several new peaks, including methyl and carbonyl peaks, were detected after irradiation. The relative concentrations of the methyl and carbonyl groups produced by irradiation were estimated from the observed intensities of the corresponding peaks. Chemical reactions resulting in the formation of the methyl and carbonyl groups are discussed on the basis of the observed changes in the relative concentrations of these groups.  相似文献   

9.
The strategy of investigation of the structures and transformations of organometallic compounds by high-resolution NMR spectroscopy in solutions and in the solid state (cross-polarization magic angle spinning NMR) was considered in relation to tricarbonylchromium complexes with polycyclic aromatic ligands.  相似文献   

10.
Phosphate adsorption from single electrolyte (NaH2PO4), phosphate-enriched seawater, and model wastewater was studied using amorphous zirconium hydroxide, ZrO(OH)2(Na2O)0.05 1.5H2O, as an adsorbent. Batch experiments were carried out to investigate the adsorption of phosphate. The effect of pH on phosphate adsorption from seawater showed that the uptake of phosphate increased with an increase in pH up to 6, and then decreased sharply with a further increase in pH of the solution. The equilibrium data of phosphate adsorption were followed with a Freundlich isotherm. The uptake of phosphate at the adsorbent/solution ratio 0.05 g/2 L was 10 and 17 mg-P/g for the phosphate-enriched seawater and the model wastewater, respectively. A much higher adsorptivity toward phosphate ions in seawater was observed on ZrO(OH)2(Na2O)0.05 1.5H(2)O than on other representative adsorbents based on layered double hydroxides of Mg(II)-Al(III), Mg(II)-Fe(III), and Ni(II)-Fe(III). The effective desorption of phosphate ions on ZrO(OH)2(Na2O)0.05 1.5H2O could be achieved using a 0.1 M NaOH solution. The usefulness of experimental data for practical applications in removing phosphate in seawater and wastewater is discussed.  相似文献   

11.
The adsorption of the herbicide paraquat (PQ(2+)) on the binary system titania-silica has been studied in batch experiments by performing adsorption isotherms under different conditions of pH, supporting electrolyte concentration, and temperature. Adsorption kinetic on the studied material has also been carried out and discussed. PQ(2+) adsorption is very low on the bare silica surface but important on the composed TiO(2)-SiO(2) adsorbent. In this last case, the adsorption increases by increasing pH and decreasing electrolyte concentration. There are no significant effects of temperature on the adsorption. The increase of the adsorption in TiO(2)-SiO(2) seems to be related to an increase in acid sites of the supported titania and to the homogenously dispersion of the TiO(2) nanoparticles over the silica support. The adsorption takes place by direct binding of PQ(2+) to TiO(2) leading to the formation of surface species of the type SiO(2)-TiO(2)-PQ(2+). Electrostatic interactions and charge-transfer and outer-sphere complexes formations seem to play a key role in the adsorption mechanism. The analysis of thermodynamic parameters suggests that the adsorption on TiO(2)-SiO(2) is endothermic and spontaneous in nature.  相似文献   

12.
Sorption of metal ions on oxide/hydroxide surfaces mediates the fate and transport of these ions in many natural systems. These metallic ions often exist in bulk in the aqueous phase as complexes with inorganic and organic ligands. In the present study, we investigated the sorption properties of manganese dioxide in the presence of phosphate which is thought to be one of the most important complex forming species. The surface area, point of zero charge and structural morphology of the solid manganese dioxide were determined. Cd(2+) sorption studies were carried out on manganese dioxide as a function of pH, temperature and phosphate concentration. Cd(2+) sorption increased with increasing pH, temperature and phosphate concentration. It was found that phosphate formed both outer and inner sphere complexes via metal and ligand-like adsorption. The Langmuir equation was applied to describe the data and from the constants of this equation different thermodynamic parameters such as DeltaH(0), DeltaS(0) and DeltaG(0) were evaluated.  相似文献   

13.
Silica gel modified with 3-aminopropyltrimethoxysilane was anchored with nicotinaldehyde to prepare a new chelating surface (or matrix). It was synthesized and characterized by elemental analysis, cross-polarization magic-angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance infrared Fourier-transform spectroscopy, nitrogen adsorption–desorption isotherm, Brunauer–Emmett–Teller surface area, and Barrett–Joyner–Halenda pore sizes. The new surface exhibits good chemical and thermal stability as determined by thermogravimetry curves. This new organic–inorganic material was used for preconcentration of Hg(II), Pb(II), Zn(II), and Cd(II) from water prior to their determination by inductively coupled plasma atomic emission spectrometry. The optimum pH for quantitative sorption of these metal ions is in the range of 6–8, and the sorption capacity is in range of 486–1,449 μmol/g. By batch method, 95 % extraction takes ≤30 min. All the metals could be desorbed with a solution of hydrochloric acid (6 N) without loss of the expensive ligand. Solutions of the metal ions were prepared by dissolution of the nitrate solution.  相似文献   

14.
The adsorption kinetics of phosphate on goethite has been studied by batch adsorption experiments and by in situ ATR-IR spectroscopy at different pH, initial phosphate concentrations and stirring rates. Batch adsorption results are very similar to those reported by several authors, and show a rather fast initial adsorption taking place in a few minutes followed by a slower process taking place in days or weeks. The adsorption kinetics could be also monitored by integrating the phosphate signals obtained in ATR-IR experiments, and a very good agreement between both techniques was found. At pH 4.5 two surface complexes, the bidentate nonprotonated (FeO)(2)PO(2) and the bidentate protonated (FeO)(2)(OH)PO complexes, are formed at the surface. There are small changes in the relative concentrations of these species as the reaction proceeds, and they seem to evolve in time rather independently. At pH 7.5 and 9 the dominating surface species is (FeO)(2)PO(2), which is accompanied by an extra unidentified species at low concentration. They also seem to evolve independently as the reaction proceeds. The results are consistent with a mechanism that involve a fast adsorption followed by a slow diffusion into pores, and are not consistent with surface precipitation of iron phosphate.  相似文献   

15.
In this work, we present the excess isotherm of acetonitrile for stationary phases with different coverage density. Data obtained with the minor disturbance method were compared with (29)Si cross-polarization/magic-angle spinning NMR spectra to find dependence between acetonitrile adsorption on C18 chemically bonded stationary phases and coverage density of stationary phase. The preferential adsorption of acetonitrile on the bonded phase and the adsorption of water on the silica surface can be well correlated with the coverage density.  相似文献   

16.
Phosphate removal from an aquatic environment was investigated using La(III)-, Ce(III)- and Fe(III)-loaded orange waste. The adsorption isotherm, the kinetics of adsorption and the effect of pH on the removal of phosphate have been examined. The % removal of phosphate using La(III)- and Ce(III)-loaded orange waste gel increases with increasing pH within the range of 5-7 but decreases when the pH is increased beyond this range. The equilibrium sorption was observed to be in accordance with Langmuir type adsorption and the maximum adsorption capacity was evaluated as 13.94 mg P/g of dry gel for all the three types of gels. Kinetic studies revealed that 15 h is enough to reach equilibrium in batch experiments. Fixed bed sorption experiments confirmed the continuous phosphate adsorption and elution capability of such simply modified gels. Due to their low cost, availability and significantly high adsorption capability, metal-loaded SOW gels can be effectively employed for the removal of phosphate from water.  相似文献   

17.
18.
A kinetic study of Aldrich humic acid sorption onto a quartz sand surface has revealed an initial rapid uptake of humic acid molecules followed by a much slower sorption. The humic acid molecular weight and chemical fractionation resulting from adsorption onto the simple quartz sand surface were investigated for the two kinetic steps by coupled asymmetric flow-field flow fractionation-UV/visible absorption spectrophotometry. The molecular weight distribution of residual humic acid in solution after adsorption deviated from the original molecular weight distribution, showing preferential adsorption of certain molecular weight components. This fractionation is different after the two kinetic steps. Humic acid molecules characterised by a molecular weight below 4800 Da and with a weight-average molecular weight (M(w)) of 1450 Da were adsorbed after the fast kinetic step, whereas humic acid molecules in the molecular weight range 1400-9200 Da and of M(w) 3700 Da were adsorbed after the slower uptake. Therefore, the adsorption of low molecular weight humic components takes place initially, and is then followed by the adsorption of higher molecular weight components. Chemical adsorptive fractionation, investigated by studying the 253 nm/203 nm absorbance ratio over time, shows that aromatic components are preferentially adsorbed during the fast kinetic step. The fractionation pattern may be explained by the physicochemical characteristics of the Aldrich humic acid and the underlying sorption processes. The trend for the sorption kinetics of europium onto the quartz sand surface in the presence of humic acid is similar to that of the humic acid itself.  相似文献   

19.
The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.  相似文献   

20.
Canister integrity and radionuclide retention is of first importance for assessing the long-term safety of nuclear waste stored in engineered geologic depositories. Uranyl ion sorption on the TiO(2) rutile (110) face is investigated using periodic density functional theory (DFT) calculations. From experimental observations, only two uranyl surface complexes are observed and characterized. When the pH increases (from 1.5 to 4.5), the relative ratios of these two surface complexes are modified. From a crystallographic point of view, three sorption sites can be considered and have been studied with different protonation states of the surface to account for very acidic and low acidic conditions. The two surface complexes experimentally observed were calculated as the most stable ones, while the evolution of their sorption energies agrees with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号