首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multipoint k-space mapping is a hybrid between constant-time (single-point mapping) and spin-warp imaging, involving sampling of a k-line segment of r points per TR cycle. In this work the method was implemented for NMR imaging of semi-solid materials on a 400 MHz micro-imaging system and two different k-space sampling strategies were investigated to minimize the adverse effects from relaxation-induced k-space signal modulation. Signal attenuation from T(2) decay results in artifacts whose nature depends on the k-space sampling strategy. The artifacts can be minimized by increasing the readout gradient amplitude, by PSF deconvolution or by oversampling in readout direction. Finally, implementation of a T(2) selective RF excitation demonstrates the feasibility of obtaining short-T(2) contrast even in the presence of tissues with long-T(2). The method's potential is illustrated with 3D proton images of short-T(2) materials such as synthetic polymers and bone.  相似文献   

2.
PurposeTo investigate velocity encoded and velocity compensated variants of multi-spoke RF pulses that can be used for flip-angle homogenization at ultra-high fields (UHF). Attention is paid to the velocity encoding for each individual spoke pulse and to displacement artifacts that arise in Fourier transform imaging in the presence of flow.Theory and methodsA gradient waveform design for multi-spoke excitation providing an algorithm for minimal TE was proposed that allows two different encodings. Such schemes were compared to an encoding approach that applies an established scheme to multi-spoke excitations. The impact on image quality and quantitative velocity maps was evaluated in phantoms using single- and two-spoke excitations. Additional validation measurements were obtained in-vivo at 7 T.ResultsPhantom experiments showed that keeping the first gradient moment constant for all k-space lines eliminates any displacements in phase-encoding and slice-selection direction for all spoke pulses but leads to artifacts for non-zero velocity components along readout direction. Introducing variable but well-defined first gradient moments in the phase-encoding direction creates displacements along the velocity vector and thus minimizes velocity-induced geometrical distortions. Phase-resolved mean volume flow in the ascending and descending aorta obtained from two-spoke excitation showed excellent agreement with single-spoke excitation over the cardiac cycle (mean difference 0.8 ± 16.2 ml/s).ConclusionsThe use of single- and multi-spoke RF pulses for flow quantification at 7 T with controlled displacement artifacts has been successfully demonstrated. The presented techniques form the basis for correct velocity quantification and compensation not only for conventional but also for multi-spoke RF pulses allowing in-plane B1+ homogenization using parallel transmission at UHF.  相似文献   

3.
The magic asymmetric gradient stimulated echo (MAGSTE) sequence developed to compensate background-gradient cross-terms in the preparation and readout interval independently, assumes identical lengths for the two gradient pulses applied in each interval. However, this approach is rather inefficient if some extra delay time is present in one half of an interval, e.g. as required for special RF excitations or spatial encoding prior to the stimulated echo in MR imaging. Therefore, a generalized version of the sequence is presented that considers different gradient pulse lengths within an interval. It is shown theoretically that (i) for any pulse lengths a "magic" amplitude ratio exists which ensures the desired cross-term compensation in each interval and that (ii) prolonging one of the gradients can deliver a considerably higher diffusion weighting efficiency. These results are confirmed in MR imaging experiments on phantoms and in vivo in the human brain at 3T using an echo-planar trajectory. In the examples shown, typically 10 times higher b values can be achieved or an echo time reduction with a 40% signal gain in brain white matter. Thus, in case of asymmetric timing requirements, the generalized MAGSTE sequence with different gradient pulse lengths may help to overcome signal-to-noise limitations in diffusion weighted MR.  相似文献   

4.
定量磁化率成像(QSM)利用一般成像技术舍弃的相位信息得到局部磁场变化特性,通过复杂的场到源反演计算,可直接得到定量的磁化率图,它广泛应用于测量血氧饱和度、脑部微出血、铁沉积、组织钙化等方面.然而,梯度磁场中流动会引起相位错误,并且产生显著的流动伪影,最终得到错误的QSM图像.为了矫正流动的影响,该文在3 T磁共振系统上实现了三维多回波流动补偿梯度回波序列,并用该序列采集流动水模和志愿者颅脑数据.流动水模和颅脑数据均显示,流动补偿能够明显矫正相位错误,消除流动伪影.颅脑横断位QSM结果证明,流动补偿序列可以消除血液流动引起的QSM的错误,提高QSM的准确性.  相似文献   

5.
Diffusion-weighted three-dimensional MP-RAGE MR imaging   总被引:1,自引:0,他引:1  
The advantages of three-dimensional (3D) acquisition are that you obtain thinner and more slices with better profiles, and better signal-to-noise ratio for an equivalent slice thickness. Three-dimensional acquisition is preferable for obtaining contiguous thin-slice MR images. However, the acquisition time extends compared with the two-dimensional acquisition because the second phase-encode axis is applied by the 3D acquisition. Therefore, 3D acquisition should be a high-speed imaging method. In this paper, a new diffusion-sensitive 3D magnetization-prepared rapid gradient-echo (3D MP-RAGE) sequence was studied. In this sequence, a preparation phase with a 90 degrees RF-motion proving gradient (MPG): MPG-180 degrees RF-MPG-90 degrees RF pulse train (diffusion-weighted driven-equilibrium Fourier transform) was used to sensitize the magnetization to diffusion. Centric k-space acquisition order is necessary to minimize saturation effects from tissues with short relaxation times. From phantom experimental results, the effect of the diffusion weighting was changed by the centric vs. sequential k-space acquisition order. The effect of centric k-space acquisition order was larger than the effect of sequential k-space acquisition order. The contrast of centric k-space acquisition order became equal to the contrast of conventional diffusion-weighted spin echo. From rat experimental results, small isotropic diffusion-weighted image data (voxel size: 0.625 x 0.625 x 0.625 mm3) were obtained. This sequence was useful in vivo.  相似文献   

6.
We analyze the evolution of magnetization following any series of radiofrequency pulses in strongly inhomogeneous fields, with particular attention to diffusion and relaxation effects. When the inhomogeneity of the static magnetic field approaches or exceeds the strength of the RF field, the magnetization has contributions from different coherence pathways. The diffusion or relaxation induced decay of the signal amplitude is in general nonexponential, even if the sample has single relaxation times T(1), T(2) and a single diffusion coefficient D. In addition, the shape of the echo depends on diffusion and relaxation. It is possible to separate contributions from different coherence pathways by phase cycling of the RF pulses. The general analysis is tested on stray field measurements using two different pulse sequences. We find excellent agreement between measurements and calculations. The inversion recovery sequence is used to study the relaxation effects. We demonstrate two different approaches of data analysis to extract the relaxation time T(1). Finite pulse width effects on the timing of the echo formation are also studied. Diffusion effects are analyzed using the Carr--Purcell--Meiboom--Gill sequence. In a stray field of a constant gradient g, we find that unrestricted diffusion leads to nonexponential signal decay versus echo number N, but within experimental error the diffusion attenuation is still only a function of g(2)Dt(3)(E)N, where t(E) is the echo spacing.  相似文献   

7.
The nature of the gradient induced electroencephalography (EEG) artifact is analyzed and compared for two functional magnetic resonance imaging (fMRI) pulse sequences with different k-space trajectories: echo planar imaging (EPI) and spiral. Furthermore, the performance of the average artifact subtraction algorithm (AAS) to remove the gradient artifact for both sequences is evaluated. The results show that the EEG gradient artifact for spiral sequences is one order of magnitude higher than for EPI sequences due to the chirping spectrum of the spiral sequence and the dB/dt of its crusher gradients. However, in the presence of accurate synchronization, the use of AAS yields the same artifact suppression efficiency for both pulse sequences below 80 Hz. The quality of EEG signal after AAS is demonstrated for phantom and human data. EEG spectrogram and visual evoked potential (VEP) are compared outside the scanner and use both EPI and spiral pulse sequences. MR related artifact residues affect the spectra over 40 Hz (less than 0.2 μV up to 120 Hz) and modify the amplitude of P1, N2 and P300 in the VEP. These modifications in the EEG signal have to be taken into account when interpreting EEG data acquired in simultaneous EEG-fMRI experiments.  相似文献   

8.
In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.  相似文献   

9.
The amplitudes of gradient-echoes produced using static field gradients are sensitive to diffusion of tissue water during the echo evolution time. Gradient-echoes have been used to produce MR images in which image intensity is proportional to the self-diffusion coefficient of water. However, such measurements are subject to error due to the presence of background magnetic field gradients caused by variations in local magnetic susceptibility. These local gradients add to the applied gradients. The use of radiofrequency (RF) gradients to produce gradient-echoes may avoid this problem. The RF magnetic field is orthogonal to the offset field produced by local magnetic susceptibility gradients. Thus, the effect of the local gradients on RF gradient-echo amplitude is small if the RF field is strong enough to minimize resonance offset effects. The effects of susceptibility gradients can be further reduced by storing magnetization longitudinally during the echo evolution period. A water phantom was used to evaluate the effects of background gradients on the amplitudes of RF gradient-echoes. A surface coil was used to produce an RF gradient of between 1.3 and 1.6 gauss/cm. Gradient-echoes were detected with and without a 0.16 gauss/cm static magnetic field gradient applied along the same direction as the RF gradient. The background static field gradient had no significant effect on the decay of RF gradient-echo amplitude as a function of echo evolution time. In contrast, the effect of the background gradient on echoes produced using a 1.6 gauss/cm static field gradient is calculated to be significant. This analysis suggests that RF gradient-echoes can produce MR images in which signal intensity is a function of the self-diffusion coefficient of water, but is not significantly affected by background gradients.  相似文献   

10.
Quantitative diffusion tensor imaging (DTI) is a novel method of magnetic resonance (MR) imaging providing information on the brain’s microstructure in vivo. DTI can be effectively measured with modern clinical MR scanners. However, imaging sequence details required for accurateb matrix calculation and for following DTI quantification are normally unknown to the user. In this work, we investigated the accuracy ofb value approximation if theb matrix is calculated without taking into account the effect of imaging gradients. It was found that an error of more than 4% in DTI estimation arises for a quite typical brain imaging protocol. The errors in mean diffusivity and fractional anisotropy index depend on diffusion tensor shape and eigenvectors orientation and exceed noise level in DTI quantification. These errors however have a strong impact on fiber tracking — up to 30% difference was found between the fiber tracks corresponding to exact and approximate calculated DTI data. Since these errors are dependent on imaging parameters and sequence implementation, accurateb matrix calculations are important for adequate comparison between data acquired on different MR scanners and also for data measured with the different imaging protocols.  相似文献   

11.
To relax the high-speed requirement imposed on the gradient system used in solid-state proton imaging, we propose two simple modifications of the magic echo imaging sequence, TREV-16TS. In the first modification, the applied gradient is inverted in the middle of the RF irradiation; the second modification utilizes a sinusoidal gradient synchronized with the RF sequence. It is estimated by experiments that as long as the RF amplitude is at least about 10 times stronger than the resonance offset induced by the gradient, the spatial resolution is not degraded significantly by the line narrowing deterioration due to the gradient applied during the on-resonance RF irradiation. The modifications allow commercially available standard gradients to be used for the magic echo imaging of solids.  相似文献   

12.
A novel approach for sampling k-space in a pure phase encoding imaging sequence is presented using the Single Point Imaging (SPI) technique. The sequence is optimised with respect to the achievable Signal-to-Noise ratio (SNR) for a given time interval via selective sparse k-space sampling, dictated by prior knowledge of the overall object of interest's shape. This allows dynamic processes featuring short T(2)( *) NMR signal to be more readily followed, in our case the absorption of moisture by a cereal-based wafer material. Further improvements in image quality are also shown via the use of complete sampling of k-space at the start or end of the series of imaging experiments; followed by subsequent use of this data for un-sampled k-space points as opposed to zero filling.  相似文献   

13.
Saijo Y  Tanaka A  Owada N  Akino Y  Nitta S 《Ultrasonics》2004,42(1-9):753-757
Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.  相似文献   

14.
We introduce a simple, efficient, low-SAR method for magnetic resonance imaging in the presence of a static field with a permanent, and possibly large gradient. The technique, which is called slant-slice imaging is essentially a spin-echo imaging sequence except that the imaging slice is oriented such that the static field gradient can be used in conjunction with applied gradients during readout. Data are collected for 2D slices. Unlike single point imaging techniques, entire lines of k-space are acquired with each readout. The slant-slice pulse sequence is used to obtain high quality images, using a clinical scanner to simulate a static field with a large permanent gradient. The effects of the inhomogeneity are quantified by two parameters nu and q, which are useful for assessing the utility of a magnet design for 3D-MR imaging.  相似文献   

15.
In the classic spectroscopic steady-state free precession (SSFP) experiment, a regular sequence of phase-coherent radio frequency pulses is applied with constant flip angle and a repetition time shorter than the NMR relaxation times of the sample. As the steady state is reached, an NMR signal appears between pulses that consists of two distinct components: a free induction signal following the RF pulses and decaying during the repetition interval and a spin-echo-like signal forming at its end prior to the subsequent RF pulse. Both signals may be exploited for NMR imaging if the gradient schemes fulfill the phase coherence requirements of SSFP. This article describes two Fourier acquired steady-state sequences dubbed FAST and CE-FAST, which may be used for the rapid acquisition of NMR images from the SSFP signals.  相似文献   

16.
The utility of multivoxel two-dimensional chemical shift imaging in the clinical environment will ultimately be determined by the imaging time and the metabolite peaks that can be detected. Different k-space sampling schemes can be characterized by their minimum required imaging time. The use of spiral-based readout gradients effectively reduces the minimum scan time required due to simultaneous data acquisition in three k-space dimensions (k(x), k(y) and k(f(2))). A 3-T spiral-based multivoxel two-dimensional spectroscopic imaging sequence using the PRESS excitation scheme was implemented. Good performance was demonstrated by acquiring preliminary in vivo data for applications, including brain glutamate imaging, metabolite T(2) quantification and high-spatial-resolution prostate spectroscopic imaging. All protocols were designed to acquire data within a 17-min scan time at a field strength of 3 T.  相似文献   

17.
Complete dissection is the current reference method to quantify muscle and fat tissue on pig carcasses. Magnetic resonance imaging (MRI) is an appropriate nondestructive alternative method that can provide reliable and quantitative information on pig carcass composition without losing the spatial information. We have developed a method to quantify the amount of fat tissue and muscle in gradient echo MR images. This method is based on the method proposed by Shattuck et al. [12]. It provides segmentation of pure tissue and partial volume voxels, which allows separation of muscle and fat tissue including the fine insertions of intermuscular fat. Partial volume voxel signal is expected to be proportional to the signals of pure tissue constituting them or at least to vary monotonously with the proportion of each tissue. However, it is not always the case with gradient echo sequence due to the chemical shift effect. We studied this effect on a fat tissue/muscle interface model with variable proportion of water in the fat tissue and variable TE. We found that at TE=8 ms, for a 0.2-T MRI system, the requirement of Shattuck's method were filled thanks to the presence of water in fat tissue. Moreover, we extended the segmentation method with a simple correction scheme to compute more accurately the proportions of each tissue in partial volume voxels. We used this method to evaluate the fat tissue and muscle on 24 pig bellies using a gradient echo sequence (TR 700 ms, TE 8 ms, slice thickness 8 mm, number of averages 8, flip angle 90 degrees , FOV 512 mm, matrix 512*512, Rect. FOV 4/8, 19 slices, space between slices 2 mm). The image analysis results were compared with dissection results giving a prediction error of the muscle content (mean=2.7 kg) of 88.9 g and of the fat content (mean=2.7 kg) of 115.8 g without correction of the chemical shift effect in the computation of partial volume fat content. The correction scheme improved these results to, respectively, 81.5 and 107.1 g.  相似文献   

18.
Magnetic resonance imaging (MRI) has served as a valuable tool for studying static postures in speech production. Now, recent improvements in temporal resolution are making it possible to examine the dynamics of vocal-tract shaping during fluent speech using MRI. The present study uses spiral k-space acquisitions with a low flip-angle gradient echo pulse sequence on a conventional GE Signa 1.5-T CV/i scanner. This strategy allows for acquisition rates of 8-9 images per second and reconstruction rates of 20-24 images per second, making veridical movies of speech production now possible. Segmental durations, positions, and interarticulator timing can all be quantitatively evaluated. Data show clear real-time movements of the lips, tongue, and velum. Sample movies and data analysis strategies are presented.  相似文献   

19.
The effect of coherent rotational motion on images acquired with the ultrafast single-shot spin-echo Burst sequence has been analyzed. Previous experience has demonstrated that sample rotation during Burst experiments has the potential to cause severe image artifacts. In this paper we show that no distortions are visible when the readout gradient is parallel to the rotation axis, but that there is a very distinctive behavior for the case of the rotation axis orthogonal to the imaging plane. The mathematical expression that describes the resulting signal is presented and is used as a basis for a method of correcting the k-space data. The conditions under which undistorted images may be recovered are discussed. It is shown that there is an asymmetry, dependent on the rotation direction, in both the manifestation of the artifact and the range of angular velocities over which one can correct the images. Data from an agar gel phantom rotating at a known rate are used to show how the theory is successful at reconstructing images, with no free parameters. The range of angular velocities over which correction is possible depends on the timing parameters of the pulse sequence, but for these data was -0.016 < omega less, similar 0.1 revolutions/s. Volunteer experiments have confirmed that the theory is applicable to patient motion and can correct motional distortion even when the exact rate is not known a priori. By optimizing the reconstruction to restore a known sample geometry/aspect ratio, an estimate of the rotation angular frequency is obtained with a precision of +/-10%.  相似文献   

20.
B1 errors are a problem in magnetization transfer ratio (MTR) measurements because the MTR value is dependent on the amplitude of the magnetization transfer (MT) pulse. B1 errors can arise from radiofrequency (RF) nonuniformity (caused by the RF coil, or skin effect and dielectric resonance in the subject's head) and also from inaccurate setting of the transmitter output when compensating for varying amounts of loading of the RF coil. B1 errors, and hence MTR errors, may be up to 5-10%, a large source of error in quantitative MR measurements. Radiofrequency nonuniformity may cause MTR histograms to be broadened. The dependence of MTR on B1 was modeled using binary spin bath theory, with a continuous wave (CW) approximation. For B1 reductions of up to 20%, normalized plots for different brain tissue types could be approximated by a single line, indicating that a systematic correction could be applied to MTR measurements with a known B1 error, regardless of tissue type. On a 1.5-T scanner with a birdcage coil, MTR was measured in 18 tissue types in five controls. The MT pulse amplitude was reduced in steps from its nominal value by up to 20%. Averaging data over all controls and tissue types resulted in a line fitting mtr(normalized)=0.812b(1normalized)+0.193, where mtr(normalized) is the normalized value of MTR (relative to its value at the nominal B1) and b(1normalized) is the normalized value of B1 (relative to its nominal value). For a 20% reduction in MT pulse amplitude (i.e., b(1normalized)=0.80), the mean MTR value for the 18 tissue types was 7.0 percent units (pu) below the correct value. After correction using the single equation above for all tissue types, all MTR values were within 1.5 pu of their correct value [root mean square (rms) error=0.7 pu]. Magnetization transfer ratio values tended to be slightly overcorrected because the simple linear correction scheme is only an approximation to the true MTR dependence on B1. A B1 field mapping technique was implemented, based on the double angle method (DAM), with fast spin-echo (FSE) readout, and TR=15 s; this took a total of 6 min of imaging time. This was used to quantify B(1) errors and correct MTR maps and histograms. However, the cerebrospinal fluid (CSF) T1 is very long (approximately 4.2 s); thus, to achieve complete longitudinal relaxation (a requirement of the DAM B1 mapping method), an increase in TR and, hence, acquisition time would be required. In general, however, we are not interested in calculating the B1 in the CSF, although it is important that the B1 is determined in partial volume voxels around the CSF. Using our birdcage head coil, whole-brain B1 histograms were found to have full-width half maximums (FWHMs) ranging from just 6.8% to 11.5% of the nominal B1 value. The FSE DAM B1 field mapping technique was shown to be robust, although a longer TR time may be desirable to ensure complete elimination of CSF partial volume errors. The procedure can be applied on any scanner where the Euro-MT sequence is available, or alternatively, where the amplitude of B1 or of the MT pulse can be manually reduced in order to perform this type of "calibration" experiment for the particular MTR sequence used. The MTR is known to be highly dependent on the parameters of the sequence used, in particular, the MT pulse shape, flip angle, duration, and offset frequency, and the repetition time TR' between successive MT pulses. Therefore, correction schemes will differ for different MTR sequences, and new data sets would be required to calculate these different correction schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号