首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a series of highly stable metallophthalocyanine-based covalent organic frameworks (MPc-dx-COFs) linked by robust 1,4-dioxin bonds constructed through nucleophilic aromatic substitution (SNAr) reaction. The chemical structures and crystallinity of the COFs largely remain unchanged even after treating with boiling water (90 °C), concentrated acids (12 mol/L HCl) or bases (12 mol/L NaOH), oxidizing (30% H2O2) or reducing agents (1 mol/L NaBH4) for three days due to their stable M-Pc building blocks and resilient dioxin linkers. With metallated phthalocyanine active sites regularly arranged in the stable framework structures, MPc-dx-COFs can be directly used as efficient electrocatalysts for the oxygen reduction reaction (ORR) without pyrolysis treatment that has commonly been used in previous studies.  相似文献   

2.
A new type of highly conductive self-doping polyaniline, MPS-Pan, containing a sulfonic acid moiety covalently bonded to the polymer backbone through an electron-donating propylthio linkage has been successfully prepared via a novel concurrent reduction and substitution route. At a similar self-doping level, the resultant MPS-Pans displayed much higher conductivity than the corresponding sulfonated-polyaniline (S-Pan). Furthermore, for fully doped samples, contrary to the trend of decreasing conductivity with the sulfonation degree in S-Pan, the conductivity of MPS-Pan was found to increase with its substitution degree. These results agreed with the expectation that electron-deficient charge carriers (e.g. semiquinone radical cations) on acid-doped polyaniline chains will be better stabilized by the electron-donating alkylthio-substituent. Surprisingly, TG and XPS studies showed that MPS-Pan was thermally much more stable than S-Pan, with S-Pan started to lose its sulfonic acid dopant at 185 ℃, while MPS-Pan remained intact up to ca. 260 ℃.  相似文献   

3.
One of the challenges in the field of enzymatic biofuel cells is to significantly improve their current limited lifetime. In the present work, we report the covalent immobilization of enzyme layers on glassy carbon electrodes, functionalized via electrochemical reduction of in situ generated aryldiazonium salts bearing carboxylic acid groups. We present the performance and the stability over time of the modified electrodes. For glucose oxidase – modified electrodes, stable catalytic activity is observed for a minimum of 6 weeks.  相似文献   

4.
Resorbable porous scaffold discs and solid films were prepared from poly[(1,5-dioxepan-2-one)-co-(L-lactide)] and poly[(epsilon-caprolactone)-co-(L-lactide)]. The surfaces of the scaffolds were functionalized to increase their hydrophilicity. A total of 90 samples were prepared to cover all important combinations of experimental and material factors, and all experimental data were fitted by a partial least square model. As a result of grafting, the porous discs and solid films exhibited a tremendous increase in wettability. The functionalized discs were hygroscopic so that water was instantly absorbed and thoroughly wet the substrates.  相似文献   

5.
New highly conductive, active and stable Ni steam reforming catalysts were prepared through a method consisting of the calcination of a hydrotalcite-like compound electrodeposited in a single step on FeCrAlloy foams.  相似文献   

6.
We have investigated the photochemical grafting of organic alkenes to atomically flat ZnO(10 ?10) single crystals and ZnO nanorods as a way to produce functional molecule-semiconductor interfaces. Atomic force microscopy shows that photochemical grafting produces highly conformal, smooth molecular layers with no detectable changes in the underlying structure of the ZnO terraces or steps. X-ray photoelectron spectroscopy measurements show that grafting of a methyl ester-terminated alkene terminates near one monolayer, while alkenes bearing a trifluoroacetamide-protected amine form very smooth multilayers. Even with multilayers, it is possible to deprotect the amines and to link a second molecule to the surface with excellent efficiency and without significant loss of molecules from the surface. This demonstrates that the use of photochemical grafting, even in the case of multilayer formation, enables multistep chemical processes to be conducted on the ZnO surface. Photoresponse measurements demonstrate that functionalization of the surface does not affect the ability to induce field effects in the underlying ZnO, thereby suggesting that this approach to functionalization may be useful for applications in sensing and in hybrid organic-inorganic transistors and related devices.  相似文献   

7.
A specific recognition material for bisphenol A (BPA) was prepared by using a covalent imprinting technique. A chloroform solution containing bisphenol A dimethacrylate as a template, ethylene glycol dimethacrylate as a cross-linking agent and 2,2′-azobis(isobutyronitrile) as an initiator was polymerized by UV initiation. When BPA was removed from the resulting polymer by hydrolysis of the ester bonds with aqueous sodium hydroxide, carboxylic acid residues were generated in the polymer. After the polymer was packed into a stainless steel column, retention factors of BPA and related compounds were measured. The imprinted polymer adsorbed BPA and structurally related compounds such as 4,4′-dihydroxybenzophenone, bis(4-hydroxyphenyl)sulfone and 4,4′-dihydroxybiphenyl. A typical association constant (Ka) was calculated to be 1.72×105 M−1 by Scatchard analysis. Interestingly, 17α- and 17β-estradiol were also bound to the imprinted polymer (Ka=1.68×105 M−1), indicating that the polymer could be used as artificial receptors for screening the compounds having estrogenic action.  相似文献   

8.
Surface chemistry is the topic of this tutorial review. It describes the electrochemical reduction of aryl diazonium salts on carbon, silicon or metals which leads to the formation of an aromatic organic layer covalently bonded to the surface. The method which permits such a modification is set forth. The proof for the existence of the organic layer is brought forward. The grafting mechanism and the covalent bonding between the surface and the aryl group are discussed. The formation of mono or multilayers depending on the experimental conditions is rationalized. Finally some examples of the possible uses of this reaction are given.  相似文献   

9.
We have used X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy, and field-emission scanning electron microscopy (SEM) to investigate the formation of single- and two-component molecular patterns by direct photochemical grafting of alkenes onto hydrogen-terminated diamond surfaces using sub-band gap 254 nm ultraviolet light. Trifluoroacetamide-protected 1-aminodec-1-ene (TFAAD) and 1-dodecene were used as model systems for grafting. Illumination with sub-band gap light can induce several different kinds of excitations, including creation of mobile electrons and holes in the bulk and creation of radicals at the surface and in the adjacent fluid, which induce grafting of the alkenes to the surface. SEM images of patterned molecular layers on nanocrystalline diamond surfaces reveal sharp transitions between functionalized and nonfunctionalized regions consistent with diffraction-limited excitation. However, identical experiments on type IIb single-crystal diamond yield a significantly more extended transition region in the molecular pattern. These data imply that the spatial resolution of the direct molecular photopatterning is affected by diffusion of charge carriers in the bulk of the diamond samples. The molecular contrast between surfaces with different terminations is consistent with the expected trends in molecular electron affinity. These results provide new mechanistic insights into the direct patterning and imaging of molecular monolayers on surfaces.  相似文献   

10.
We have developed a two‐stage process to graft poly(ethylene oxide) (PEO) onto a silica surface. In the first stage the adsorption of an anchor reactive polymer to the surface is carried out, and in the second stage the grafting of compatibilizing macromolecular tails is performed via the reactions of functional groups of the polymer anchored. Random copolymers of styrene and maleic anhydride (SM) were chosen as reactive anchoring polymers. The kinetics of adsorption of SM from dilute solutions onto the silica surface as well as the grafting of PEO to SM macromolecules adsorbed was experimentally investigated by null ellipsometry. A model of the structure at the surface is proposed.  相似文献   

11.
12.
Highly conductive free standing polypyrrole (PPy) films were prepared by a novel freezing interfacial polymerization method. The films exhibit metallic luster and electrical conductivity up to 2000 S cm(-1). By characterizing with SEM, FTIR, Raman and XRD, the high conductivity is attributed to the smooth surface, higher conjugation length and more ordered molecular structure of PPy.  相似文献   

13.
We here report on the covalent grafting of various phosphated species (phosphoric acid, phenylphosphonic acid, and octyl phosphate) onto the surface of monoclinic zirconia nanoparticles obtained by hydrothermal treatment of zirconium acetate. The initial particles are 60 nm aggregates of nanometric primary grains and present an inner porosity. Small-angle X-ray scattering shows that the high specific area of the colloidal particles (450 m2 x g(-1)) decreases to 150 m2 x g(-1) upon drying. Therefore, phosphated reactants can access the whole internal surface of the aggregates only before drying. The surface of the particles can be covered with functional groups bound through a variable number of Zr-O-P bonds. Several factors probably enhance the reaction between the particles and the phosphates or phosphonates: the large specific area of the particles, a fully accessible porous network, and a large concentration of surface terminal groups. At the same time, the morphology of the particles is well preserved upon grafting. This is due to the good crystallinity of the primary grains that constitute the particles. In addition, the grafting drastically modifies the surface properties of the colloids. For example, the polarizability of the particles decreases in the sequence -POH > as-prepared ZrO2 > -PC6H5 > -POC8H17. Furthermore, the grafting of octyl phosphate allows exclusion of water from pores of 2 nm radius, up to hydrostatic pressures of 20 MPa.  相似文献   

14.
The modification of silica nanoparticles with hexafluoropropylene oxide (HFPO) oligomers has been investigated. HFPO oligomers with two different average degrees of polymerization (DPn = 8 and 15) were first prepared by anionic ring-opening polymerization, deactivated by methanol, and in some cases postfunctionalized by aminopropyl(tri)ethoxysilane or allylamine. The "grafting onto" reactions of these oligomers were then carried out either on bare silica (reaction between a silanol surface and ethoxy-silanized HFPO) or on silica functionalized by amino groups (in an amidation reaction with methyl ester-ended HFPO) or mercapto groups (via the radical addition of allyl-functionalized HFPO). Hybrid nanoparticles thus obtained were characterized by solid-state (29)Si NMR and FTIR spectroscopies as well as elemental and thermogravimetric analyses. The results assessed a significant yield of covalent grafting of HFPO oligomers when performing the hydrolysis-condensation of ethoxylated HFPO on the bare silica surface, compared to the other two methods that merely led to physically adsorbed HFPO chains. Chemically grafted nanohybrids showed a high thermal stability (up to 400 °C) as well as a very low surface tension (typically 5 mN/m) compared to physisorbed complexes.  相似文献   

15.
Single-crystal diamond surfaces were implanted with chromium ions. Ion energies chosen were 120 and 180 keV. Ion doses of 1x10(17) cm(-2) were applied at a substrate temperature of 750 degrees C. Reduced lattice damage could be obtained by deposition of a titanium sacrificial layer with a thickness of 10 and 50 nm before implantation. Depth profiles of the elemental binding states were taken by photoelectron spectroscopy. The effect of the sacrificial layer thickness on diamond lattice damage was investigated by infrared spectroscopy.  相似文献   

16.
In this paper, we report a simple and versatile surface coating method to functionalize poly(3-caprolactone) (PCL) films by molecular self-assembly of a hydrogelator.  相似文献   

17.
Redox-active ferrocenyl (Fc)-functionalized poly(propylenimine) (PPI) dendrimers solubilized in aqueous media by complexation of the Fc end groups with beta-cyclodextrin (betaCD) were immobilized at monolayers of betaCD on glass ("molecular printboards") via multiple host-guest interactions. The directed immobilization of the third-generation dendrimer-betaCD assembly G3-PPI-(Fc)16-(betaCD)16 at the printboard was achieved by supramolecular microcontact printing. The redox activity of the patterned dendrimers was mapped by scanning electrochemical microscopy (SECM) in the positive feedback mode using [IrCl(6)](3-) as a mediator. Local oxidation of the Fc-dendrimers by the microelectrode-generated [IrCl(6)](2-) resulted in an effective removal of the Fc-dendrimers from the host surface since the oxidation of Fc to the oxidized form (Fc+) leads to a concomitant loss of affinity for betaCD. Thus, SECM provided a way not only to image the surface, but also to control the binding of the Fc-terminated dendrimers at the molecular printboard. Additionally, the electrochemical desorption process could be monitored in time as the dendrimer patterns were gradually erased upon multiple scans.  相似文献   

18.
Label-free detection of DNA molecules on chemically vapor-deposited diamond surfaces is achieved with spectroscopic ellipsometry in the infrared and vacuum ultraviolet range. This nondestructive method has the potential to yield information on the average orientation of single as well as double-stranded DNA molecules, without restricting the strand length to the persistence length. The orientational analysis based on electronic excitations in combination with information from layer thicknesses provides a deeper understanding of biological layers on diamond. The pi-pi* transition dipole moments, corresponding to a transition at 4.74 eV, originate from the individual bases. They are in a plane perpendicular to the DNA backbone with an associated n-pi* transition at 4.47 eV. For 8-36 bases of single- and double-stranded DNA covalently attached to ultra-nanocrystalline diamond, the ratio between in- and out-of-plane components in the best fit simulations to the ellipsometric spectra yields an average tilt angle of the DNA backbone with respect to the surface plane ranging from 45 degrees to 52 degrees . We comment on the physical meaning of the calculated tilt angles. Additional information is gathered from atomic force microscopy, fluorescence imaging, and wetting experiments. The results reported here are of value in understanding and optimizing the performance of the electronic readout of a diamond-based label-free DNA hybridization sensor.  相似文献   

19.
The tribological properties of ultrathin films containing nanoparticles encapsulated in immobilized dendrimers are investigated. The films were formed by covalent molecular assembly in supercritical carbon dioxide, and the Au nanoparticles were formed in aqueous solution. End-capping of the terminal amine groups of the dendrimer by fluorinated species resulted in a reduction in the size of the nanoparticles formed. The resulting film structure displayed a lower coefficient of friction when the nanoparticles were formed after fluorination. The observed improvement in the tribological properties is attributed to the reduction in agglomeration of the nanoparticles due to the presence of the fluorine moieties.  相似文献   

20.
We have synthesized a new amphiphilic block oligomer by the enzymatic linking of a fatty acid (lauric acid) to a fructan oligomer (inulin) and tested the functionality of this carbohydrate derivative in foam stabilization. The structure of the modified oligosaccharide was found to be (Fruc)n(Glc)1CO-C11H23, which implies that on average one lauric acid molecule was linked to one inulin molecule. The new component produces foams with exceptional stability. Our results show that enzymatic acylation can produce an entirely new class of amphiphilic materials, with functionality comparable to that of synthetic block copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号