首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The characteristics of natural fluctuations of density in a laminar near wake behind a sharp cone in a hypersonic flow of nitrogen at zero incidence are studied by the method of electronbeam fluorescence at Mach numberM=21 and unit Reynolds numberRe 1=6·105 m−1. The distributions of the mean density, integral fluctuations, and spectra of density fluctuations are obtained, the longitudinal and azimuthal phase velocities of perturbations are determined, and the growth rates of perturbations in the wake are found. The results are compared with the measurement data in the shock layer on a flat plate. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 111–117, May–June, 2000  相似文献   

2.
Direct numerical simulations of the evolution of disturbances in a viscous shock layer on a flat plate are performed for a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105. Unsteady Navier-Stokes equations are solved by a high-order shock-capturing scheme. Processes of receptivity and instability development in a shock layer excited by external acoustic waves are considered. Direct numerical simulations are demonstrated to agree well with results obtained by the locally parallel linear stability theory (with allowance for the shock-wave effect) and with experimental measurements in a hypersonic wind tunnel. Mechanisms of conversion of external disturbances to instability waves in a hypersonic shock layer are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 84–91, May–June, 2007.  相似文献   

3.
The evolution of disturbances in a hypersonic viscous shock layer on a flat plate excited by slow-mode acoustic waves is considered numerically and experimentally. The parameters measured in the experiments performed with a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105 are the transverse profiles of the mean density and Mach number, the spectra of density fluctuations, and growth rates of natural disturbances. Direct numerical simulation of propagation of disturbances is performed by solving the Navier-Stokes equations with a high-order shock-capturing scheme. The numerical and experimental data characterizing the mean flow field, intensity of density fluctuations, and their growth rates are found to be in good agreement. Possible mechanisms of disturbance generation and evolution in the shock layer at hypersonic velocities are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 3–15, September–October, 2006.  相似文献   

4.
Results of a numerical and experimental study of characteristics of disturbances in a hypersonic shock layer on a flat plate covered by a sound-absorbing coating and aligned at an angle of attack are presented. Experiments and computations are performed for the free-stream Mach number M = 21 and Reynolds number Re L = 6 · 104. A possibility of suppressing pressure fluctuations in the shock layer at frequencies of 20–40 kHz with the use of tubular and porous materials incorporated into the plate surface is demonstrated. Results of numerical simulations are found to be in good agreement with experimental data.  相似文献   

5.
A numerical and experimental study of receptivity of the viscous shock layer on a flat plate aligned at an angle of attack to external acoustic perturbations is performed. Density and pressure fluctuations are measured in experiments at the free-stream Mach number M = 21 and Reynolds number Re 1 = 6·10 5 m −1 . Direct numerical simulations of receptivity of the viscous shock layer to external acoustic perturbations in wide ranges of the governing parameters are performed by solving the Navier-Stokes equations with the use of high-order shock-capturing schemes. The calculated intensities of density and pressure fluctuations are found to be in good agreement with experimental data. Results of the study show that entropy-vortex disturbances dominate in the shock layer at small angles of attack, whereas acoustic perturbations prevail at angles of attack above 20°.  相似文献   

6.
Results of numerical simulations of the evolution of disturbances in a hypersonic shock layer on a flat plate at high Mach numbers (M = 21) and moderate Reynolds numbers (Re L = 1.44 · 105) are analyzed by an adapted method of bispectral analysis. All basic types of nonlinear interactions are obtained. The calculated results are compared with experimental data.  相似文献   

7.
The profile and excitation mechanism of vacuum-ultraviolet radiation emitted from shock wave is investigated in a shock tube. For shock wave in argon, the rdiation is due to resonant transition excited by argon-argon collision in the shock front with excitation cross section coefficientS *=1.0×10−17 cm2·ev−1 and activation energyE *=11.4 ev. For shock wave in air the radition is emitted from a very thin shock layer in which the mechanism ofX 1∑→b 1∑ of N2 is excited with excitation cross sectionQ=2×10−16cm2 and activation energyE *=12.1 ev. Institute of Mechanics, Academia Sinica  相似文献   

8.
Nonlinear disturbance development in a hypersonic flat-plate shock layer (M = 21, Re L = 1.44×105) exposed to external-flow slow-mode acoustic perturbations at one or several frequencies is studied on the basis of the numerical solution of the Navier-Stokes equations. The mean flow distortion by disturbances and the nonlinear self-interaction between spectral modes is investigated by varying the initial amplitudes of the acoustic waves introduced. The appearance of combination frequencies, both summarized and subtracted, and their interaction with each other is shown to exist.  相似文献   

9.
Experimental data on stability of a three-dimensional supersonic boundary layer on a swept wing are presented. Evolution of artificial wave trains was studied. The experiments were conducted for Mach numberM=2.0 and unit Reynolds numberRe 1=6.6·106m−1 on a swept-wing model with a lenticular profile and a40° sweep angle of the leading edge at zero incidence. Excitation of high-frequency disturbances caused by secondary-flow instability at a high initial amplitude was observed. It is shown that the evolution of disturbances at frequencies of10, 20, and30 kHz is similar to the development of travelling waves for the case of subsonic velocities. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 50–56, January–February, 2000.  相似文献   

10.
The results of a wind-tunnel experiment on the joint action of periodic acoustic fast-mode disturbances of the outer flow and disturbances generated at the leading edge of a plate on the hypersonic (M = 21) viscous shock layer on the plate are presented. The possibility of positively controlling the intensity of density fluctuations in the plate shock layer by means of disturbances introduced from the leading edge is shown. Direct numerical simulation of the suppression (enhancement) of disturbances under the simultaneous action on the shock layer of the two-dimensional fast-mode acoustic waves in the outer flow and the source of two-dimensional suction/injection disturbances near the leading edge of the plate is performed under the experimental conditions. The experimental and calculated results are shown to be in good agreement.  相似文献   

11.
An electron-beam fluorescence technique is used to investigate the properties of density waves in the shock layer on a flat plate placed in a hypersonic stream (Mx=21) at zero incidence; the Reynolds number based on the longitudinal coordinate and the freestream parameters is Rex=(2.7–3)·105. Transverse profiles of the mean density and the overall and spectral levels of the density fluctuations are obtained, the longitudinal and lateral phase velocities of the waves and the correlation scales are determined, and the longitudinal increments of the waves are derived. The data are compared with the experimental results obtained at Rex=(2.6–7)10·4.  相似文献   

12.
The laminar-turbulent transition is experimentally studied in boundary-layer flows on cones with a rectangular axisymmetric step in the base part of the cone and without the step. The experiments are performed in an A-1 two-step piston-driven gas-dynamic facility with adiabatic compression of the working gas with Mach numbers at the nozzle exit M = 12–14 and pressures in the settling chamber P0 = 60–600 MPa. These values of parameters allow obtaining Reynolds numbers per meter near the cone surface equal to Re 1e = (53–200) · 106 m −1. The transition occurs at Reynolds numbers Re tr = (2.3–5.7) · 106. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 76–83, May–June, 2007.  相似文献   

13.
Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.  相似文献   

14.
Receptivity of a viscous shock layer on a flat plate aligned at an angle of attack to external multiwave acoustic perturbations is studied. It is shown that external acoustic waves and periodic controlled perturbations introduced from the surface of the plate mounted at an angle of attack smaller than 20° generate entropy-vortex disturbances with a similar spatial distribution in the viscous shock layer. This result allows numerical implementation of the interference method of controlling disturbances generated in the viscous shock layer on the plate by external acoustic waves at one frequency and at a spectrum of frequencies by introducing blowing-suction perturbations on the plate surface with appropriate amplitudes and phases.  相似文献   

15.
Numerical modeling of the receptivity of a two-dimensional flat-plate boundary layer to entropy disturbances is carried out at the freestream Mach number M = 6. Low-intensity perturbations considered are in the form of temperature spots of various shapes and with different initial positions downstream of the shock. They are shown to be able to generate unstable disturbances in the boundary layer. This receptivity mechanism is relatively weak as compared with the receptivity to acoustic waves. When the entropy perturbations are introduced upstream of the bow shock, they first pass across the shock. Downstream of the shock this interaction generates acoustic waves which, in turn, penetrate into the boundary layer thus exciting unstable disturbances of a considerably greater amplitude than the temperature spots. Thus, the bow shock can change the receptivity mechanism.  相似文献   

16.
Stability of a supersonic (M = 5.373) boundary layer with local separation in a compression corner with a passive porous coating partly absorbing flow perturbations is considered by solving two-dimensional Navier-Stokes equations numerically. The second mode of disturbances of a supersonic boundary layer is demonstrated to be the most important one behind the boundary-layer reattachment point. The possibility of effective stabilization of these disturbances behind the reattachment point with the use of porous coatings is confirmed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 39–47, March–April, 2007.  相似文献   

17.
The spatio-temporal dynamics of small disturbances in viscous supersonic flow over a blunt flat plate at freestream Mach number M=2.5 is numerically simulated using a spectral approximation to the Navier–Stokes equations. The unsteady solutions are computed by imposing weak acoustic waves onto the steady base flow. In addition, the unsteady response of the flow to velocity perturbations introduced by local suction and blowing through a slot in the body surface is investigated. The results indicate distinct disturbance/shock-wave interactions in the subsonic region around the leading edge for both types of forcing. While the disturbance amplitudes on the wall retain a constant level for the acoustic perturbation, those generated by local suction and blowing experience a strong decay downstream of the slot. Furthermore, the results prove the importance of the shock in the distribution of perturbations, which have their origin in the leading-edge region. These disturbance waves may enter the boundary layer further downstream to excite instability modes.  相似文献   

18.
Stability of a hypersonic shock layer on a flat plate is examined with allowance for disturbances conditions on the shock wave within the framework of the linear stability theory. The characteristics of the main flow are calculated on the basis of the Full Viscous Shock Layer model. Conditions for velocity, pressure, and temperature perturbations are derived from steady Rankine–Hugoniot relation on the shock wave. These conditions are used as boundary conditions on the shock wave for linear stability equations. The growth rates of disturbances and density fluctuations are compared with experimental data obtained at ITAM by the method of electron-beam fluorescence and with theoretical data of other authors. To cite this article: A.A. Maslov et al., C. R. Mecanique 332 (2004).  相似文献   

19.
 The problem of the self-similar boundary flow of a “Darcy-Boussinesq fluid” on a vertical plate with temperature distribution T w(x) = T +A·x λ and lateral mass flux v w(x) = a·x (λ−1)/2, embedded in a saturated porous medium is revisited. For the parameter values λ = 1,−1/3 and −1/2 exact analytic solutions are written down and the characteristics of the corresponding boundary layers are discussed as functions of the suction/ injection parameter in detail. The results are compared with the numerical findings of previous authors. Received on 8 March 1999  相似文献   

20.
An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41–60, surfaces with Reynolds number based on momentum thickness, 3,000 < Re θ < 40,000. The experiment was carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91–108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33–79, 1998a) scaling of the mean velocity deficit, U δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号