首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fast method to detect and sequence photomodified oligodeoxynucleotides (ODNs) by exonuclease digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is reported. Upon treatment of modified ODNs with both phosphodiesterase I and phosphodiesterase II, the digestion stops at the sites of photomodification. Post-source decay (PSD) of MALDI-produced ions from two enzymatic digestion end products distinguishes isomers such as 5'-d(T[cis-syn]TAAGC) and 5'-d(CGAAT[cis-syn]T), which have symmetrical or identical compositions at the 3' and 5' ends, respectively. Studies have also been done to follow the kinetics for enzyme degradation of photomodified ODNs. The calculated rate constants from a mathematical treatment of the time-dependent MALDI data clearly show that the enzymatic digestion rate slows as the enzyme approaches the modified site.  相似文献   

2.
The fragmentation of positive ions of DNA under the conditions of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was investigated by post-source decay (PSD) analysis and hydrogen/deuterium (H/D) exchange. Spectra of five different synthetic 4mer oligonucleotides were recorded. As a main result the hypothesis was confirmed that for these ions all fragment ions result from processes, initiated by protonation/deuteration of a suitable base followed by a loss of this base as a neutral or ion and further backbone cleavages. The three bases adenine, guanine, and cytosine all exhibit comparable lability for fragmentation. The spectra show evidence for an interaction of the adenine base with the phosphate backbone. Signals of fragments containing TT- and CT-cycloadducts were observed in the spectra.  相似文献   

3.
A detailed investigation of the most commonly used plasticizers, such as phthalate, adipate and trimellitate esters, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and post-source decay (PSD) MALDI-TOFMS/MS is described. It is shown that PSD MALDI-TOFMS/MS is capable of unambiguous determination of the different types of plasticizers. The determination of the types of plasticizers from different PVC samples by PSD MALDI-TOFMS/MS, without the need for solvent extraction, is also demonstrated. The fragmentation mechanisms of these plasticizers cationized with protons and sodium ions are also reported.  相似文献   

4.
A mixture of 2',4',6'-trihydroxyacetophenone in acetonitrile and aqueous triammonium citrate solution in a 1:1 molar proportion (0.2 M concentration) was found to be a good matrix for the detection of synthetic oligodeoxynucleotide samples. A high proportion of volatile solvent as well as the high salt content ensure fast co-crystallization of the matrix, co-matrix and analyte molecules. Matrix-assisted laser desorption/ionization (MALDI) mass spectra obtained in negative ion reflectron mode from samples prepared with this protocol show deprotonated molecules [M - H](-), rather than sodium adducts, as the most abundant ions even when up to 50 mM of sodium chloride is present in the sample. The matrix is shown to be effective for low mass modified single nucleotides as well as for longer oligodeoxynucleotides (up to 18mer). Post-source decay (PSD) mass spectra can also be obtained by increasing the laser fluence. Simple sequence information such as the identity and localization of a deleted base or the 5'/3' orientation can then easily be obtained. The calibration method and mass accuracy required are discussed depending on the type of information required.  相似文献   

5.
The utility of post-source decay (PSD) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated for the structural analysis of phosphatidylcholine (PC). PC did not produce detectable negative molecular ion from MALDI, but positive ions were observed as both [PC+H](+) and [PC+Na](+). The PSD spectra of the protonated PC species contained only one fragment corresponding to the head group (m/z 184), while the sodiated precursors produced many fragment ions, including those derived from the loss of fatty acids. The loss of fatty acid from the C-1 position (sn-1) of the glycerol backbone was favored over the loss of fatty acid from the C-2 position (sn-2). Ions emanating from the fragmentation of the head group (phosphocholine) included [PC+Na-59](+), [PC+Na-183](+) and [PC+Na-205](+), which corresponded to the loss of trimethylamine (TMA), non-sodiated choline phosphate and sodiated choline phosphate, respectively. Other fragments reflecting the structure of the head group were observed at m/z 183, 146 and 86. The difference in the fragmentation patterns for the PSD of [PC+Na](+) compared to [PC+H](+) is attributed to difference in the binding of Na(+) and H(+). While the proton binds to a negatively charged oxygen of the phosphate group, the sodium ion can be associated with several regions of the PC molecule. Hence, in the sodiated PC, intermolecular interaction of the negatively charged oxygen of the phosphate group, along with sodium association at multiple sites, can lead to a complex and characteristic ion fragmentation pattern. The preferential loss of sn-1 fatty acid group could be explained by the formation of an energetically favorable six-member ring intermediate, as apposed to the five-member ring intermediate formed prior to the loss of sn-2 fatty acid group.  相似文献   

6.
Fibrinopeptide B (M r 1552.58) was employed as a calibration compound for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) post-source decay (PSD) fragment ion analysis in the negative mode. Experiments were performed by using both continuous and delayed extraction, with the maximum reflectron voltages being 30 and 21 kV, respectively. For comparison, a common positive ion PSD calibrant, ACTH(18–39) (M r 2466.7), was also employed with positive ion calibration constants being applied to negative ion spectra. Using fibrinopeptide B as the calibrant, the negative ion PSD results for angiotensin II (M r 1046.2), renin substrate tetradecapeptide (horse) (M r 1759.0), and the custom-synthesized peptide (K2G4)2 (M r 987.1) showed a factor of 1.5–2 improvement in absolute mass accuracy. Typical absolute mass-to-charge ratio accuracies were within ±1 Thomson and were achieved even when the peptide being analyzed was more massive than fibrinopeptide B. In addition, both calibrants showed increased accuracy when experiments were conducted in the delayed extraction mode. Other advantages of using fibrinopeptide B are its moderate cost and the ability to perform calibration and sample analysis for negative ion PSD under the same instrumental conditions.  相似文献   

7.
Phosphorylation of tyrosine residues in proteins is a common regulatory mechanism, although it accounts for less than 1% of the total O-phosphate content in proteins. Whereas aromatic phosphorylation sites can be identified by a number of different analytical techniques, sequence analysis of phosphotyrosine-containing proteins at the low picomole or even femtomole level is still a challenging task. This paper describes the post-source decay in matrix-assisted laser desorption/ionization mass spectrometry of phosphotyrosine-containing model peptides by comparing their fragmentation behavior with sequence-homologous unphosphorylated peptides. Whereas the parent ions showed significant losses of HPO3, all phosphorylated fragment ions of the b- and y-series displayed only minor dephosphorylated signals, which often were not detectable. Surprisingly, one of the studied phosphotyrosine-containing sequences displayed, in addition to the [M + H - 80]+ ion, a more abundant [M + H - 98]+ ion, which could be explained by elimination of phosphoric acid. This dephosphorylation pattern was very similar to the patterns obtained for phosphoserine- and phosphothreonine-containing peptides. Because the dephosphorylation pattern of the parent ion is often used to identify modified amino acids in peptides, we investigated possible dephosphorylation mechanisms in detail. Therefore, we substituted single trifunctional amino acid residues and incorporated deuterated phosphotyrosine residues. After excluding direct elimination of phosphoric acid from tyrosine, we could show that the obtained loss of H3PO4 depends on aspartic acid and arginine residues. Most likely the HPO3 group is transferred to aspartic acid followed by cleavage of phosphoric acid forming a succinimide. On the other hand, arginine appears to induce the H3PO4 loss by protonation of phosphotyrosine leaving a phenyl cation.  相似文献   

8.
A series of synthetic cyclic decapeptides and other smaller cyclic peptides were analyzed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The investigated compounds were cyclized in a head-to-tail manner and contained non-proteinaceous amino acids, such as D-phenylalanine, D,L-4-carboxyphenylalanine, epsilon-aminocaproic acid, and gamma-aminobutyric acid, and were synthesized in a program to develop inhibitors of pp60(c-src) (Src), a tyrosine kinase that is involved in signal transduction and growth regulation. Post-source decay (PSD) spectra of the cyclic peptides featured abundant sequence ions. Two preferential ring opening reactions were detected resulting in linear fragment ions with an N-terminus of proline and a C-terminus of glutamic acid, respectively. MALDI-PSD spectra even permitted de novo sequencing of some cyclic peptides. Systematic studies on cyclic peptides using this method of fragmentation have not been reported to date. This work presents an easy mass spectrometric method, MALDI-PSD, for the characterization and identification of cyclic peptides.  相似文献   

9.
Matrix-assisted laser desorption/ionization (MALDI) was performed using two pulsed lasers with wavelengths in the IR and UV regions. A 10.6 micro m pulsed CO(2) laser was used to irradiate a MALDI target, followed after an adjustable delay by a 337 nm pulsed nitrogen laser. The sample consisted of a 2,5-dihydroxybenzoic acid matrix and bovine insulin guest molecule. The pulse energy for both of the lasers was adjusted so that the ion of interest, either the matrix or guest ion, was not produced by either of the lasers alone. The delay time for maximum ion yield occurs at 1 micro s for matrix and guest ions and the signal decayed to zero in approximately 400 micro s. A mechanism is presented for enhanced UV MALDI ion yield following the IR laser pulse based on transient heating.  相似文献   

10.
Post source decay (PSD) analysis of precursor ions generated from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is a powerful tool for amino acid sequencing and primary structure analysis of proteins. N-Terminal sulfonation has become an effective derivatization strategy in facilitating de novo peptide sequencing by the formation of predominate y-type ion series in MALDI PSD spectra. Recently, an effective and inexpensive N-terminal derivatization method has been reported using 4-sulfophenyl isothiocyanate (SPITC) as the derivatization reagent (J. Mass. Spectrom. 2003; 38: 373-377). In this paper, we report an improvement in the derivatization procedure with this reagent that involves replacing an organic co-reagent with other chemicals and eliminating the use of organic solvent. The method is demonstrated on a model peptide and on tryptic digests of two proteins. The results indicate that the improved sulfonation reaction can be implemented with high efficiency under aqueous conditions and that the sensitivity of mass detection can be increased considerably.  相似文献   

11.
Post-source decay matrix-assisted laser desorption ionization (PSD-MALDI) of sodium ion-attached branched oligosaccharides derived from glycoproteins was demonstrated as a method of structure analysis by reflectron time-of-flight (TOF) mass spectrometry. Mono-, di- and triantennary structures were investigated. The fragmentation patterns of these (structurally related) substances as obtained in the positive-ion mode showed characteristic differences correlated with branching sites and linkage positions. Two-bond ring cleavages as known from fast atom bombardment/collision-induced dissociation and IR laser desorption mass spectrometry were also observed. Internal fragment ions formed by up to four consecutive cleavages were obtained with high intensity, allowing the branching structure of complex carbohydrates to be identified. PSD-MALDI of oligosaccharides is characterized by high sensitivity, very good signal-to-noise ratios and high reproducibility of fragmentation patterns and signal intensities.  相似文献   

12.
Matrix-assisted laser desorption/ionization mass spectrometry is a powerful analytical tool for the structural characterization of oligonucleotides and nucleic acids. Here we report the application of stable isotope labeling for the simplified characterization of ribonucleic acids (RNAs). An (18)O label is incorporated at the 3'-phosphate of oligoribonucleotides during the enzymatic processing of intact RNAs. As implemented, a buffer solution containing a 50 : 50 mixture of H(2)O and (18)O-labeled H(2)O is used during endonuclease digestion. Upon digestion, characteristic doublets representative of the isotopic distribution of oxygen are noted for those products that contain 3'-phosphate groups. This approach is used to distinguish readily endonuclease digestion products from incomplete digestion products and non-specific cleavage products. In addition, RNase digestion products containing the characteristic isotopic doublet can be selected for further characterization by post-source decay (PSD) analysis. PSD products carrying the 3'-phosphate group will appear as a doublet, thereby simplifying fragment ion assignment.  相似文献   

13.
Fragmentation reactions of sodium-cationized enkephalin peptides generated by matrix-assisted laser desorption/ionization were studied using post-source decay (PSD) with a reflectron time-of-flight mass spectrometer. Several matrices and analyte-matrix sample preparation methods were evaluated for high-intensity ion currents that could last for the entire PSD analysis. A triple dried-droplet sample preparation procedure with 2,5-dihydroxybenzoic acid as the matrix was found to yield abundant longer-lasting ion signals of the peptide-Na(+) ion adducts. The principal decay product of these adduct ions is the [b(n-1) + Na + OH](+) ion, which provides an unambiguous identification of the C-terminal residue of a peptide. In some peptides, the loss of a second residue from the C-terminus is also observed. No other sequence-specific ions were observed.  相似文献   

14.
The use of post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the structural analysis of ((partly) methyl-esterified) oligogalacturonides (oligoGalA) is described. The fragmentation behavior of purified (un)saturated oligoGalA (degree of polymerization 3-6), methyl-esterified and methyl-glycosydated oligoGalA was studied. General fragmentation patterns are described and used for the elucidation of the positions of methyl esters on partly methyl-esterified oligoGalA. This technique now permits the determination of the position of methyl esters or other substituents on pectic fragments, helping in understanding the mode of action of pectinolytic enzymes.  相似文献   

15.
Peptide sequencing by mass spectrometry is gaining increasing importance for peptide chemistry and proteomics. However, available tools for interpreting matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) mass spectra depend on databases, and identify peptides by matching experimental data with spectra calculated from database sequences. This severely obstructs the identification of proteins and peptides not listed in databases or of variations, e.g. mutated proteins. The development of a new computer program for database-independent peptide sequencing by MALDI-PSD mass spectrometry is reported here. This computer program was validated by the determination of the correct sequences for various peptides including sequences listed in the sequence databases, but also for peptides that deviate from database sequences or are completely artificial. This strategy should substantially facilitate the identification of novel or variant peptides and proteins, and increase the power of MALDI-PSD analyses in proteomics.  相似文献   

16.
A quantitative model of primary ionization in ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) is presented. It includes not only photochemical processes such as exciton pooling, but also the effects of the desorption event. The interplay of these two is found to be a crucial aspect of the MALDI process. The desorbing plume is modeled as an adiabatic expansion with entrained clusters. The parameters in the model are defined as much as possible via experiment or by analogy with known effects. The model was applied to the matrix 2,5-dihydroxybenzoic acid and found to reproduce the fluence dependence of the fluorescence yield and key features of the picosecond two-pulse ion generation efficiency curves. In addition, the model correctly predicts a fluence rather than irradiance threshold, the magnitude of the threshold, the magnitude of the ion yield, laser wavelength effects, plume temperatures, plume expansion velocities and the spot size effect.  相似文献   

17.
Dinucleoside polyphosphates are a group of intra- and extracellular mediators controlling numerous physiological functions. In this study dinucleoside polyphosphates were examined by positive ion matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MADLI-TOFMS). 3-Hydroxypicolinic acid was used as UV-absorbing matrix. For the individual dinucleoside polyphosphates Ap(n)A (n = 2-7), Ap(n)G (n = 2-6) and Gp(n)G (n = 2-6), MALDI post-source decay (PSD) mass spectra were measured. Each mass peak in the MALDI-PSD mass spectra could be assigned to individual fragments of dinucleoside polyphosphates. The comparison of the fragmentation patterns of the dinucleoside polyphosphates presented here demonstrates that dinucleoside polyphosphates preferably cleave to fragment ions consisting of the corresponding mononucleoside polyphosphates as well as the corresponding nucleosides and bases during flight in the field-free drift path of the MALDI mass spectrometer. Therefore, the MALDI-PSD approach described here is suitable for identification of other dinucleoside polyphosphates. The present MALDI-PSD mass spectra may be used as MALDI-PSD mass reference spectra for future identification of dinucleoside polyphosphates and other nucleotides.  相似文献   

18.
The product ions of the BH(2)(+) ions formed by the glycosidic cleavage of N-(deoxyguanosin-O(6)-yl)-2-methylaniline, 4-(deoxyguanosin-8-yl)-2-methylaniline, and N-(deoxyguanosin-1-yl)-2-methylaniline have been studied using matrix-assisted laser desorption/ionization (MALDI) and post-source decay (PSD) to identify fragment ions and pathways that may be used to differentiate their structures. All three isomers may be distinguished based on their PSD product ion spectra using only femtomole quantities of sample. N-(Deoxyguanosin-O(6)-yl)-2-methylaniline produces product ions at m/z 107 and 134 that are diagnostic for 2-methylaniline attachment to the O(6) position of guanine. The BH(2)(+) ion from 4-(deoxyguanosin-8-yl)-2-methylaniline yields a product ion formed by the consecutive losses of 17 and 42 u neutral fragments that may be regarded as specific for guanine-arylamine adducts that possess two primary amine groups. The BH(2)(+) ion from 4-(deoxyguanosin-8-yl)-2-methylaniline yields no product ions that correlate with specificity for guanine N1 substitution. However, the product ion abundance ratio of the protonated arylamine to that of the ammonia loss ion may be used to differentiate an adduct formed by N1 substitution from other arylamine adducts of guanine studied thus far.  相似文献   

19.
20.
In the era of complete genome sequences, biochemical and medical research will focus more on the dynamic proteome of a cell. Regulation of proteins by post-translational modifications, which are not determined by the gene sequence, are already intensively studied. One example is phosphorylation of serines and threonines, probably the single most common cellular regulatory mechanism. In this paper we describe the sequencing of mono- and bisphosphorylated peptides, including identification of the phosphorylation sites, by post-source decay (PSD) in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition to dephosphorylation of the parent ions, we studied the influence of the phosphate group on the fragmentation of peptides. Generally, peptides phosphorylated on serine and threonine residues displayed no difference in their fragmentation patterns. The intensities of the resulting fragment ion signals depend only on the peptide sequence and not on either the phosphorylated amino acid or its position in the peptide chain. Phosphorylation increased the bond cleavage C-terminal to the phosphorylation site more than 10-fold, resulting in abundant signals, which typically dominated the PSD spectra. The produced C-terminally phosphorylated b-type fragment ions showed characteristic dephosphorylated fragment ions b(n) -H(3)PO(4) (-98 Da) and b(n) -HPO(3) (-80 Da) of higher abundances than the phosphorylated fragment ion. As a second layer to identify the phosphorylation site, all internally phosphorylated fragment ions were accompanied by minor, but always detectable, signals of the dephosphorylated fragment ions. Interpretation of PSD spectra of phosphopeptides was not more complicated than for unphosphorylated peptides, despite the increased number of obtained fragment ion signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号