首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of the Cu x TiSe2 compound with x = 0.05, 0.09, and 0.33 have been grown. Resonance photoelectron Cu 3p-3d and 2d-3d spectra of the valence bands, the spectra of the core levels, and the L absorption spectra for titanium and copper have been obtained. It is shown that the degree of oxidation of titanium atoms is +4 and the state of copper atoms is close to the state of free copper ions. It is found that the spectra of the valence bands obtained under the Cu 3p and 2p resonance conditions radically differ. For the spectra in the Cu 2p excitation regime, several bands corresponding to different decay channels of the excited state are observed. According to calculations of the density of states, the 3d states of copper are filled incompletely; the occupancy of the 3d band of copper is 9.5 electrons per atom.  相似文献   

2.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

3.
The hierarchical structure of fermion masses of the Standard Model is explained in split fermion models by localizing the fermions at different points in an extra dimension. We consider split fermion models with two bulk scalars compactified on an orbifold. In the static case we find analytical expression for the localizer. We also address the issue of stability of the localizer. We also find exact solutions for the fermion zero modes. We explore the parameter space of the model. We find ample opportunity for construction of phenomenologically viable theories exist.  相似文献   

4.
The optical properties of GeO x film and GeO x /SiO2 multilayer heterostructures (with thickness of GeO x layers down to 1 nm) were studied with the use of Raman scattering and infrared spectroscopy, ellipsometry and photoluminescence spectroscopy including temperature dependence of photoluminescence. The observed photoluminescence is related to defect (dangling bonds) in GeO x and interface defects for the case of GeO x /SiO2 multilayer heterostructures. From analysis of temperature dependence of photoluminescence intensity, it was found that rate of nonradiative transitions in GeO x film has Berthelot type, but anomalous deviations from Berthelot type temperature dependence were observed in temperature dependences of photoluminescence intensities for GeO x /SiO2 multilayer heterostructures.  相似文献   

5.
We have studied, through ab initio calculations, the stability of 60° and 120° boron nitride nanocones containing mono and multiple boron, nitrogen, and carbon vacancies. The stability of the vacancies as well as the structures reconstruction mechanism have been investigated. Our results indicate that the stability of the cones presenting such vacancies strongly depends on growth conditions. We have also found that multiple vacancies display formation energies that are comparable, and in some cases, even lower to the ones presented by monovacancies. Therefore, our results allow us to conclude that the formation energy does not depend on the vacancy size. Finally, for 120° cones, we can verify that the stability of the boron and nitrogen vacancies depends on the position where the atom has been removed.  相似文献   

6.
The physical and structural properties of Fe1.11Te and Fe1.11Te0.5Se0.5 have been investigated by means of X-ray and neutron diffraction as well as physical property measurements. For the Fe1.11Te compound, the structure distortion from a tetragonal to monoclinic phase takes place at 64 K accompanied with the onset of antiferromagnetic order upon cooling. The magnetic structure of the monoclinic phase was confirmed to be of antiferromagnetic configuration with a propagation vector k = (1/2, 0, 1/2) based on Rietveld refinement of neutron powder diffraction data. The structural/magnetic transitions are also clearly visible in magnetic, electronic and thermodynamic measurements. For superconducting Fe1.11Te0.5Se0.5 compound, the superconducting transition with T c = 13.4 K is observed in the resistivity and ac susceptibility measurements. The upper critical field H c2 is obtained by measuring the resistivity under different magnetic fields. The Kim’s critical state model is adopted to analyze the temperature dependence of the ac susceptibility and the intergranular critical current density is calculated as a function of both field amplitude and temperature. Neutron diffraction results show that Fe1.11Te0.5Se0.5 crystalizes in tetragonal structure at 300 K as in the parent compound Fe1.11Te and no structural distortion is detected upon cooling to 2 K. However an anisotropic thermal expansion anomaly is observed around 100 K.  相似文献   

7.
8.
A new perovskite-like compound Er0.73Cu3V4O12 (space group Im \(\bar 3\), Z = 2, a = 7.266 Å) has been synthesized barothermally (P = 8.0 GPa, t = 1000°C). Its electrical and magnetic properties have been studied. It is found that the temperature dependence of the electrical conductivity (in the range 78–300 K) has of semiconductor type. The behavior of the impedance and admittance has been analyzed at 290 K and frequencies of 200 Hz to 200 kHz under atmospheric pressure and at high (15–42 GPa) pressures.  相似文献   

9.
Compounds in the pseudobinary Cu-TiSe2 intercalation system are directly synthesized from elements. The phase diagram of the system is investigated, the solubility limit of copper is measured, and the structure of the material is determined. In the copper concentration range up to 60 mol %, single crystals are grown and the temperature dependence of the electrical resistance is measured. It is demonstrated that, in the concentration range under investigation, the intercalation of the system with copper gives rise to a set of phenomena observed upon intercalation of alkali metals.  相似文献   

10.
LSDA + U + SO calculations of the electronic structure of helicoidal Fe1 - xCo x Si ferromagnets within the virtual crystal approximation have been supplemented with the consideration of the Dzyaloshinski-Moriya interaction and ferromagnetic fluctuations of the spin density of collective d electrons with the Hubbard interactions at Fe and Co atoms randomly distributed over sites. The magnetic-state equation in the developed model describes helicoidal ferromagnetism and its disappearance accompanied by the occurrence of a maximum of uniform magnetic susceptibility at temperature T C and chiral fluctuations of the local magnetization at T > T C . The reasons why the magnetic contribution to the specific heat at the magnetic phase transition changes monotonically and the volume coefficient of thermal expansion (VCTE) at low temperatures is negative and has a wide minimum near T C have been investigated. It is shown that the VCTE changes sign when passing to the paramagnetic state (at temperature T S ).  相似文献   

11.
Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type A x B1- x C can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp 3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of Cd x Zn1- x Se nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes.  相似文献   

12.
13.
The structural and elastic characteristics of YBaCo4O7 + x (x = 0, 0.1, 0.2) cobaltites synthesized by various technologies and having various excess oxygen contents x are experimentally studied. The distortion of the crystal structure in stoichiometric samples is found to remove frustrations and to bring about a longrange magnetic order in the cobalt subsystem, which is accompanied by well-pronounced anomalies in the elastic properties in the temperature range of a magnetic phase transition TN. At a weak deviation from oxygen stoichiometry, the structure distortion disappears, frustrations are retained, and the further development of a long-range magnetic order is hindered. As a result of an absent long-range magnetic order, the anomalies of the elastic characteristics at TN smooth rapidly and disappear. This finding points to the suppression of structural and magnetic transitions in nonstoichiometric samples and to the conservation of only short-range correlations of order parameter. It is found that nonstoichiometric samples can be separated into two phases depending on the ceramic synthesis conditions.  相似文献   

14.
Metal nanoparticles have been combined with magnet metal–organic frameworks (MOFs) to afford new materials that demonstrate an efficient catalytic degradation, high stability, and excellent reusability in areas of catalysis because of their exceptionally high surface areas and structural diversity. Magnetic M x O y @N-C (M = Fe, Co, Mn) nanocrystals were formed on nitrogen-doped carbon surface by using 8-hydroxyquinoline as a C/N precursor. The Co@N-C, MnO@N-C, and Fe/Fe2O3@N-C catalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption, and X-ray photoelectron spectroscopy (XPS). The catalytic performances of catalysts were thoroughly investigated in the oxidation of aniline solution based on sulfate radicals (SO4 ?.) toward Fenton-like reaction. Magnetic M x O y @N-C exhibits an unexpectedly high catalytic activity in the degradation of aniline in water. A high magnetic M x O y @N-C catalytic activity was observed after the evaluation by aniline degradation in water. Aniline degradation was found to follow the first-order kinetics, and as a result, various metals significantly affected the structures and performances of the catalysts, and their catalytic activity followed the order of Co > Mn > Fe. The nanoparticles displayed good magnetic separation under the magnetic field.
Graphical Abstract ?
  相似文献   

15.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

16.
The final-state interaction of pions in K e4 decay allows to obtain the value of the isospin and angular-momentum-zero ππ scattering length a 00.We take into account the electromagnetic interaction of pions and isospin-symmetry-breaking effects caused by different masses of neutral and charged pions and estimate the impact of these effects on the procedure of scattering-length extraction from K e4 decays.  相似文献   

17.
The final-state interaction of pions in K e4 decay allows to obtain the value of the isospin and angular-momentum-zero ππ scattering length a 0 0 .We take into account the electromagnetic interaction of pions and isospin-symmetry-breaking effects caused by different masses of neutral and charged pions and estimate the impact of these effects on the procedure of scattering-length extraction from K e4 decays.  相似文献   

18.
This paper reports on the results of theoretical investigations carried out for the hydrides Mg2FeH6 and Mg2CoH5 and the mixed hydride Mg2(FeH6)0.5(CoH5)0.5 in terms of the full-potential linearized augmented plane wave (FLAPW) method. It has been shown that the partial substitution of the Co atoms for the Fe atoms leads to a slight increase in the stability of the hydride, but, at the same time, makes it impossible to increase the stability of the alloy. The high stability of the hydrides under investigation has been explained by the strong bonding between atoms of the transition metal and hydrogen.  相似文献   

19.
Motivated by recent experimental results and ongoing measurements, we review the chiral perturbation theory prediction for decays. Special emphasis is given to the stability of the inner bremsstrahlung-dominated relative branching ratio versus the K e3 form factors, and on the separation of the structure-dependent amplitude in differential distributions over the phase space. For the structure-dependent terms, an assessment of the order p 6 corrections is given, in particular, a full next-to-leading order calculation of the axial component is performed. The experimental analysis of the photon energy spectrum is discussed, and other potentially useful distributions are introduced.Received: 9 December 2004, Published online: 21 February 2005PACS: 13.20.Eb, 11.30.Rd, 12.39.Fe  相似文献   

20.
X-ray photoelectron spectroscopy is used to study Mn3O4, Mn2O3, and MnO2 manganese oxide surfaces subjected to mechanical activation by means of high intensity grinding. It is found that Mn2O3 is the most thermodynamically stable of these oxides; mechanical activation converts the surface layers of Mn3O4 and MnO2 into this intermediate oxide. The chemical stability of activated Mn2O3 with respect to actions of the environment was considerably elevated. This result is explained in terms of features of the structural state of the mechanically activated surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号