首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the acoustic reflex threshold (ART) dependency on stimulus phase utilizing low-level reflex audiometry [Neumann et al., Audiol. Neuro-Otol. 1, 359-369 (1996)]. The goal is to obtain optimal broadband stimuli for elicitation of the acoustic reflex and to obtain objective determinations of cochlear hearing loss. Three types of tone complexes with different phase characteristics were investigated: A stimulus that compensates for basilar-membrane dispersion, thus causing a large overall neural synchrony (basilar-membrane tone complex-BMTC), the temporally inversed stimulus (iBMTC), and random-phase tone complexes (rTC). The ARTs were measured in eight normal-hearing and six hearing-impaired subjects. Five different conditions of peak amplitude and stimulus repetition rate were used for each stimulus type. The results of the present study suggest that the ART is influenced by at least two different factors: (a) the degree of synchrony of neural activity across frequency, and (b) the fast-acting compression mechanism in the cochlea that is reduced in the case of a sensorineural hearing loss. The results allow a clear distinction of the two subjects groups based on the different ART for the utilized types and conditions of the stimuli. These differences might be useful for objective recruitment detection in clinical diagnostics.  相似文献   

2.
The decrease in absolute threshold with increasing stimulus duration (often referred to as "temporal integration") is greater for listeners with normal hearing than for listeners with sensorineural hearing loss. It has been suggested that the difference is related to reduced basilar-membrane (BM) compression in the impaired group. The present experiment tested this hypothesis by comparing temporal integration and BM compression in normal and impaired ears at low levels. Absolute thresholds were measured for 4, 24, and 44 ms pure-tone signals, with frequencies (f(s)) of 2 and 4 kHz. The difference between the absolute thresholds for the 4 and 24 ms signals was used as a measure of temporal integration. Compression near threshold was estimated by measuring the level of a 100 ms off-frequency (0.45f(s)) pure-tone forward masker required to mask a 44 ms pure-tone signal presented at sensation levels of 5 and 10 dB. There was a significant negative correlation between amount of temporal integration and absolute threshold. However, there was no correlation between absolute threshold and compression at low levels; both normal and impaired ears showed a nearly linear response. The results suggest that the differences in integration between normal and impaired ears cannot be explained by differences in BM compression.  相似文献   

3.
The acoustic-reflex thresholds (ART) for multicomponent tonal complexes of varying bandwidth and spectral density were obtained from 20 normal-hearing (air-conduction thresholds less than or equal to 20 dB HL at 250-8000 Hz) young adults ranging in age from 20-30 years and 20 normal-hearing, old subjects ranging in age from 60-71 years. The results revealed that the ART decreased with spectral density, plateauing after seven components in the young group and after five components in the old group; the decrease in the acoustic-reflex threshold as a result of the increase in spectral density was less in the old than in the young group. The bandwidth effect (when bandwidth was plotted in hertz or octaves) on the acoustic-reflex threshold was present in the young adults, but substantially reduced in the elderly, as evidenced by the statistically significant interaction between subject group and signal bandwidth. The spectral density results are discussed in terms of their theoretic implications for the energy summation capacity and frequency resolution of the auditory system. The bandwidth results are discussed in terms of their theoretic implications for the frequency-resolving power of the auditory system.  相似文献   

4.
5.
Temporal integration of tone glides   总被引:1,自引:0,他引:1  
Temporal integration of rising and falling tone glides against a 50-2800-Hz background of noise at a sound pressure level of 60 dB re 20 micronPa was studied in two experiments. Glides were in the frequency ranges 200-700 Hz and 1200-1700 Hz for durations of 5-120 ms. Results indicate an asymmetry in the detectability of rising and falling glides of short duration, with rising glides detected at lower signal intensities in both frequency ranges. These effects are discussed in terms of differences in pattern of frequency analysis of identical, but temporally reversed, waveforms.  相似文献   

6.
Temporal integration was measured at a relatively low and a relatively high signal frequency under conditions of off-frequency masking. The masker was typically gated for 300 ms, and the signal was presented 70 ms after masker onset. In experiment 1, the signal frequency was 500 or 2000 Hz. Temporal integration was measured in quiet and in the presence of a masker whose frequency was lower or higher than the signal frequency. In all listening situations, there was less integration at 2000 Hz than at 500 Hz. This effect of frequency was particularly dramatic in the presence of a lower frequency masker, where there was almost no integration at 2000 Hz. Experiment 2 showed that this dramatic effect of frequency cannot be understood in terms of the underlying psychometric functions. Experiment 3 measured temporal integration at 750 and 2000 Hz for a large number of masker-signal frequency separations for both a tonal and a noise masker, and in conditions where the masker was gated or continuous. The results with the gated tonal masker largely confirmed the results of experiment 1. The results with the continuous tonal masker and the gated or continuous noise masker, however, were quite different. In those cases, the amount of temporal integration at both signal frequencies was more or less independent of the masker-signal separation; the masked temporal integration was nearly equal to the integration in quiet. Thus based on the conditions evaluated here, off-frequency masked temporal integration differs substantially from integration in quiet only for gated tonal maskers located considerably lower in frequency than the signal. It is unclear how to account for this finding, although it may be related to attentional factors.  相似文献   

7.
For rapidly adapting mechanoreceptor afferents, entrainment is defined as a response of one spike per stimulus cycle. For Pacinian corpuscles, the entrainment threshold and psychophysical detection threshold are similar. The psychophysical threshold, however, exhibits temporal summation, which proves that the psychophysical threshold and the physiological entrainment threshold cannot be identical.  相似文献   

8.
Avoidance conditioning and a modified method of limits psychophysical procedure were used to study temporal integration of tone and noise signals in the budgerigar (Melopsittacus undulatus). Integration of both tone and noise signals can be described by a negative exponential function with a time constant of about 200 ms. At very short durations there were differences in the integration of tone and noise signals. These data are similar to those reported for a number of other vertebrates, including man. Thresholds for two complex natural vocalizations of the budgerigar are similar to those of pure tones of equivalent duration.  相似文献   

9.
Temporal integration of loudness of 1 kHz tones with 5 and 200 ms durations was assessed in four subjects using two loudness measurement procedures: categorical loudness scaling (CLS) and loudness matching. CLS provides a reliable and efficient procedure for collecting data on the temporal integration of loudness and previously reported nonmonotonic behavior observed at mid-sound pressure level levels is replicated with this procedure. Stimuli that are assigned to the same category are effectively matched in loudness, allowing the measurement of temporal integration with CLS without curve-fitting, interpolation, or assumptions concerning the form of the loudness growth function.  相似文献   

10.
To explain the temporal integration and temporal resolution abilities revealed in echolocating animals by behavioral and electrophysiological experiments, the peripheral coding of sounds in the high-frequency auditory system of these animals is modeled. The stimuli are paired pulses similar to the echolocating signals of the animals. Their duration is comparable with or smaller than the time constants of the following processes: formation of the firing rate of the basilar membrane, formation of the receptor potentials of internal hair cells, and recovery of the excitability of spiral ganglion neurons. The models of auditory nerve fibers differ in spontaneous firing rate, response thresholds, and abilities to reproduce small variations of the stimulus level. The formation of the response to the second pulse of a pair of pulses in the multitude of synchronously excited high-frequency auditory nerve fibers may occur in only two ways. The first way defined as the stochastic mechanism implies the formation of the response to the second pulse as a result of the responses of the fibers that did not respond to the first pulse. This mechanism is based on the stochastic nature of the responses of auditory nerve fibers associated with the spontaneous firing rate. The second way, defined as the repeatition mechanism, implies the appearance of repeated responses in fibers that already responded to the first pulse but suffered a decrease in their response threshold after the first spike generation. This mechanism is based on the deterministic nature of the responses of fibers associated with refractoriness. The temporal resolution of pairs of short pulses, which, according to the data of behavioral experiments, is about 0.1–0.2 ms, is explained by the formation of the response to the second pulse through the stochastic mechanism. A complete recovery of the response to the second pulse, which, according to the data of electrophysiological studies of short-latency evoked brainstem potentials in dolphins, occurs within 5 ms, is explained by the formation of the response to the second pulse through the repetition mechanism. The time constant of temporal integration, which, according to the behavioral experiments at threshold levels of pulses, is about 0.2–0.3 ms, is explained by the integrating properties of internal hair cells, etc. It is shown that, at the high-frequency auditory periphery, the temporal integration imposes no limitations on the temporal resolution, because both integration and resolution are different characteristics of the same multiple response of synchronously excited fibers.  相似文献   

11.
Two experiments investigated the temporal integration of trains of tone pulses by normal and by cochlearly impaired listeners. In the first experiment, thresholds were measured for a single 5-ms, 4-kHz tone pulse, and for ten such tone pulses as a function of interpulse interval (delta t). For normal listeners, temporal integration, defined as the threshold difference between one and ten pulses, was about 8 dB for delta t less than 20 ms, and about 5 dB at longer delta t's. For impaired listeners, temporal integration was only about 2-3 dB across the range of delta t's (5-160 ms) studied. A second experiment measured psychometric functions (log d' versus log signal power) for a single pulse and for ten pulses with delta t's of 5 ms and 80 ms. The normal listeners' functions had slopes close to unity in all three conditions, with a few exceptions. The impaired listeners' functions had slopes close to unity for ten pulses with delta t = 5 ms, but had slopes significantly greater than unity for delta t = 80 ms, and for a single pulse. At delta t = 80 ms, the increase in d' relative to the condition with a single tone was similar (a factor of square root of 10) for both impaired and normal listeners, but the threshold difference was smaller for the impaired listeners due to their steeper psychometric functions. For impaired listeners, then, temporal integration at delta t = 80 ms was normal in terms of a change in d' but abnormal when measured as a threshold difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
利用Matlab 语言将EFIT 程序反演计算过程进行优化整合,简化了程序操作步骤,并增加了对计算结果的分析与存储功能。利用整合后的EFIT 程序,计算分析了J-TXET 装置放电过程中等离子体磁场位形和其它参数的演变,绘制了等离子体压强剖面图、等离子体电流密度和安全因子分布等磁面信息的重建结果。此外,还将反演结果与软X 射线测算数据进行比对。结果表明,改善后的EFIT 程序能够初步满足对实验放电的反演计算分析要求,为J-TXET 装置的放电控制和运行提供重要的参考数据。  相似文献   

13.
利用Matlab语言将EFIT程序反演计算过程进行优化整合,简化了程序操作步骤,并增加了对计算结果的分析与存储功能。利用整合后的 EFIT 程序,计算分析了 J-TXET 装置放电过程中等离子体磁场位形和其它参数的演变,绘制了等离子体压强剖面图、等离子体电流密度和安全因子分布等磁面信息的重建结果。此外,还将反演结果与软X射线测算数据进行比对。结果表明,改善后的EFIT程序能够初步满足对实验放电的反演计算分析要求,为J-TXET装置的放电控制和运行提供重要的参考数据。  相似文献   

14.
《光学技术》2017,(1):38-42
针对图像处理中存在椒盐噪声和高斯噪声的问题,提出了一种新的小波阈值函数与改进中值滤波融合的噪声抑制算法。依据椒盐噪声与其周围邻域像素灰度值存在的明显差异,估计椒盐噪声,采取3×3模板进行反复迭代滤除椒盐噪声。对高斯噪声,利用极限思想提出了一种新的小波阈值函数,并引入三个控制变量,通过调节控制变量使所构成的小波系数在一定阈值范围内无限接近原小波系数。实验结果表明,提高了峰值信噪比,减小了均方误差,较好的保留了图像细节。  相似文献   

15.
This study tests the hypothesis that temporal integration for detection of tone bursts with various durations can be explained by optimally combining multiple looks of brief signal segments whose contribution to detection increases over time. Detectability was measured for signals consisting of six consecutive 25-ms, 1-kHz tone pulses presented in a 50-Hz-wide masker or in maskers consisting of seven 50-Hz-wide noises, one critical band apart, with either coherent or incoherent envelopes. The level of each signal pulse varied randomly around masked threshold according to a Gaussian distribution. The slopes of conditional psychometric functions--plotted in terms of d'2 as a function of the squared signal-pulse intensity for pulses in a particular temporal position--yielded estimates of the contribution to detection provided by each pulse. Results for three normal listeners showed a small, but significant, effect of the temporal location of the pulse. Multiple-looks predictions of temporal-integration functions based on the measured weights and on measured psychometric functions were compared to measured temporal-integration functions. For the single-band and incoherent maskers, the predicted temporal-integration slopes were reasonably consistent with those measured, but for the coherent masker it was not. Whereas no current theory can explain the very steep temporal-integration functions obtained in the coherent masker, the present results are not inconsistent with the multiple-looks hypothesis as an explanation for the decrease in threshold with increasing duration of signals presented in random maskers.  相似文献   

16.
Temporal integration for a 1000-Hz signal was determined for normal-hearing and cochlear hearing-impaired listeners in quiet and in masking noise of variable bandwidth. Critical ratio and 3-dB critical band measures of frequency resolution were derived from the masking data. Temporal integration for the normal-hearing listeners was markedly reduced in narrow-band noise, when contrasted with temporal integration in quiet or in wideband noise. The effect of noise bandwidth on temporal integration was smaller for the hearing-impaired group. Hearing-impaired subjects showed both reduced temporal integration and reduced frequency resolution for the 200-ms signal. However, a direct relation between temporal integration and frequency resolution was not indicated. Frequency resolution for the normal-hearing listeners did not differ from that of the hearing-impaired listeners for the 20-ms signal. It was suggested that some of the frequency resolution and temporal integration differences between normal-hearing and hearing-impaired listeners could be accounted for by off-frequency listening.  相似文献   

17.
To assess temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking, absolute thresholds for tones were measured as a function of duration. Durations ranged from 500 ms down to 15 ms at 0.25 kHz, 8 ms at 1 kHz, and 2 ms at 4 and 14 kHz. An adaptive 2I, 2AFC procedure with feedback was used. On each trial, two 500-ms observation intervals, marked by lights, were presented with an interstimulus interval of 250 ms. The monaural signal was presented in the temporal center of one observation interval. The results for five normal and six impaired listeners show: (1) normal listeners' thresholds decrease by about 8 to 10 dB per decade of duration, as expected; (2) listeners with cochlear impairments generally show less temporal integration than normal listeners; and (3) listeners with impairments simulated using masking noise generally show the same amount of temporal integration as normal listeners tested in the quiet. The difference between real and simulated impairments indicates that the reduced temporal integration observed in impaired listeners probably is not due to splatter of energy to frequency regions where thresholds are low, but reflects reduced temporal integration per se.  相似文献   

18.
吴鸿兴  王声波 《光学学报》1993,13(12):057-1065
本文对激光的阈值给出了新的理论解释,提出了激光新阈值理论,导出了激光新阈值条件的解析表达式,并对各类激光器分别进行了讨论,而且从实验上测量了激光器的阈值反转粒子数密度nth与允许激光器获得振荡放大的持续时间△t之间的关系,其结果与激光新阈值理论结果相一致。  相似文献   

19.
An asymptotic model based on a reductive perturbative expansion of the drift kinetic and Maxwell’s equations is used to demonstrate that, near the instability threshold, the nonlinear dynamics of mirror modes in a magnetized plasma with anisotropic ion temperatures involves a subcritical bifurcation, leading to the formation of small-scale structures with amplitudes comparable with the ambient magnetic field. The text was submitted by the authors in English.  相似文献   

20.
An asymptotic model based on a reductive perturbative expansion of the drift kinetic and Maxwell’s equations is used to demonstrate that, near the instability threshold, the nonlinear dynamics of mirror modes in a magnetized plasma with anisotropic ion temperatures involves a subcritical bifurcation, leading to the formation of small-scale structures with amplitudes comparable with the ambient magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号